MATH 2050

Practice Midterm 2

- 1. (20 points) Consider the plane $\pi : 2x y + z = 0$.
 - (a) Find two orthogonal vectors in the plane, π .

(b) Find the projection of
$$\vec{u} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 onto the plane, π .

2. (15 points) Consider
$$\vec{u}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}$, and $\vec{u}_4 = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}$.

- (a) Show that \vec{u}_1 , \vec{u}_2 , and \vec{u}_3 are linearly independent.
- (b) Are $\vec{u}_1, \vec{u}_2, \vec{u}_3$, and \vec{u}_4 linearly independent?
- 3. (10 points) Given $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, compute AB and BA.
- 4. (40 points) Find all solutions, if any, to each of the given systems of equations. Express your answers in vector form.
 - (a) 2x y = 3 4x - 2y = 4(b) 2y - z = -2 x + y + 3z = -10(c) x + y + 3z = 2 -2x - 2y - 6z = -4 x + y - 2z = 3(d) 2x - y + 3z = 0x - 2y + 2z = -3
- 5. (15 points) Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n .
 - (a) Give the formula for $\operatorname{proj}_{\vec{v}}\vec{u}$.
 - (b) Show that if \vec{u} is nonzero, then $\vec{u} \text{proj}_{\vec{u}}\vec{u}$ is the zero vector.