- 1. (20 points) Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n .
 - (a) State the Cauchy-Schwarz Inequality.
 - (b) State the Triangle Inequality.
 - (c) Give the definitions of $\|\vec{u}\|$ and $\vec{u} \cdot \vec{v}$.
 - (d) Define the *angle* between \vec{u} and \vec{v} .
 - (e) Give the definition of when \vec{u} and \vec{v} are *parallel*.
- 2. (20 points) Consider the vectors $\vec{u} = \begin{bmatrix} 1\\ 4\\ 0 \end{bmatrix}$, and $\vec{v} = \begin{bmatrix} 0\\ -1\\ 2 \end{bmatrix}$.

(a) Is
$$\vec{w} = \begin{bmatrix} 2 \\ 6 \\ -4 \end{bmatrix}$$
 a linear combination of \vec{u} and \vec{v} ?

- (b) Find a vector orthogonal to both \vec{u} and \vec{v}
- (c) Find the area of the parallelogram with sides \vec{u} and \vec{v} .

3. (20 points) Find the point of intersection of the lines $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 5 \\ 0 \\ -3 \end{bmatrix}$ and

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}.$ Find the equation of the plane that includes both lines.

- 4. (10 points) Consider the points A(0, 1, 2), B(2, 3, 1), and C(2, 2, 4).
 - (a) Find the cosine of the angle between vectors \overrightarrow{AB} and \overrightarrow{AC} .
 - (b) Are \overrightarrow{AB} and \overrightarrow{AC} orthogonal?

5. (15 points) Consider the vectors
$$\vec{u} = \begin{bmatrix} 0\\ 3\\ -2 \end{bmatrix}$$
, and $\vec{v} = \begin{bmatrix} 1\\ x\\ 3x^2 \end{bmatrix}$.

- (a) Find all values of x such that \vec{u} and \vec{v} are orthogonal.
- (b) Explain why there are no values of x such that \vec{u} and \vec{v} are parallel.
- (c) Give a non-zero vector \vec{w} that is orthogonal to \vec{v} for all values of x.
- 6. (15 points) Verify the scalar triple product identity, that, for any vectors \vec{u} , \vec{v} , and \vec{z} in \mathbb{R}^3 ,

$$\vec{u} \cdot (\vec{v} \times \vec{z}) = \vec{v} \cdot (\vec{z} \times \vec{u})$$
.