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Random Signaling Problems



Pollination

• What what probability will a pollen grain released from the 
stamen of one flower find the pistil of another flower? 

• On average, how long does this take? 
• How does the shape of the stamen affect this?



Foraging

• Will the anteater find the ants? 
• On average, how long does this take?

Suppose an animal is randomly foraging for food.



• What is the probability of this binding occurring? 
• On average, how long does this take? 
• How does the distribution of the receptors affect this?

Molecular Signaling

Antigens

T Cell

When an antigen (a toxin or a protein that promotes an immune response) 
binds to a receptor on a T-cell it can trigger the creation of antibodies.



Modeling Diffusion  
&  

Capture

pollen on a stamen

http://www.dailymail.co.uk/sciencetech/article-1267236/Microscopic-images-reveal-invisible-enemy-faced-hayfever-sufferers.html



Brownian Motion

https://en.wikipedia.org/wiki/Brownian_motion

Brownian motion is the random walk a 
molecule takes due to collisions with 
other molecules. 
 
Typically it can be describe by a 
distribution of velocities.  

Let  
• V0 be the average speed 
• L0 be the mean free path



Random Walks
Due to the Central Limit Theorem after many  
steps the density,         , of the random walk converges  
to a Gaussian distribution. 

In N-dimensions, the distribution approaches 

The diffusion constant, D, scales as 
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The Diffusion Equation
The density of molecules,         , satisfies  
the diffusion equation in some domain    .
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Flux & Neumann BC’s
The flux of molecules is given by the Fourier Law

[velocity]x[density]

At an impermeable boundary, we have a no-flux BC:
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At the particle level, particles are reflected. 
Angle of incidence =Angle of reflection
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Capture & Dirichlet BC’s
At a boundary that captures every molecule  
that impacts it the density will drop to zero

At the particle level, particles are captured.
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Partial Capture & Robin BC’s
Consider a boundary that reflects some, but not all,  
of the particles that strike it. 

At the particle level, some particles  
are captured while some are reflected.
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Metrics for Capture 



Probability of Capture
Consider a domain with a target boundary and  
an escape boundary.  

The probability, f(x), that a molecule  
is captured satisfies Laplace’s equation:

This is sometimes called harmonic measure.
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A 1D Escape Problem



Distribution of First Passage Time (FPT)
Consider a domain with a target boundary. 

The density of mass capture per unit time, p(t), can 
be computed by integrating the flux over the target 
boundary.  
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The Importance of Dimension

x0 R
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Capture in 1D

x0 R

Consider a d-function release at x=R.
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Capture in 2D

r=R

Consider a d-function release at r=R and a circular trap of radius a.

Probability of capture: 

FPT: 
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Capture in 3D

r=R

Consider a d-function release at r=R and a spherical trap of radius a.

Probability of capture: 

FPT: 
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Homogenization & Effective 
Boundary Conditions



The Basic Question
Can you replace a complicated boundary condition 

or geometry with a much simpler one?

Irregular shape cell 
Many pores

Spherical Trap

Asymptotics 

Numerics



The steady-state ansatz
Suppose we are looking at 
a small target in a large 
domain.  

When can we assume that 
the density is steady near 
the target?  
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A simple example

r2u = 0 r > a

lim
r!1

u(r) = C1
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A Pore on a Plane
Consider a circular pore of radius a 
on an infinite plane.  
There is an exact solution for           .
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On the surface, the flux is: 

Sneddon, Elements of PDE, (1957). 

The total flux into the pore is: 
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Homogenization: Many pores on a planes
For N pores of radius a:

F
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When the distance between pores,               . dij � a

This tells us how to replace many pores with one.

Berg & Purcell 1977

Bernoff & Lindsay 2016



Homogenization: Pores on a Sphere

This is a classic problem considered by  
Berg & Purcell (1977) in the dilute pore limit.

The  next order correction in the asymptotics has been 
computed by Lindsay & Ward (2016). 

F
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Knowing the flux allows you to replace 
the sphere with either a smaller sphere 
or a Robin BC.



Random Walk Numerics

random walk simulation for an absorbing sphere



3D Random Walk Numerics

r=R

Consider a d-function release at r=R and a spherical trap of radius a.

r=a ut = D


urr +

2

r
ur

�
r > 0, t > 0

u(r, 0) =
1

4⇡R2
�(r �R) r > a

u(a, t) = 0 t > 0

Numerical Method:
• N particles 
• Take Gaussian distributed steps of Variance = DDt 
• Stop when particle is inside target. a = 1, R = 3, D = 1
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Numerics

Exact Challenges: 
• Slow convergence. 
• Long-time asymptotics  

often impossible to verify. 
• Good for capture %, but  

difficult to obtain capture rate.  



Challenge Problems



A Challenge Problem
Suppose a set of particles are released 
at the center of a sphere of radius R. 
The sphere has N pores of radius a on its  
surface. Compute the distribution of exit 
times for the sphere. 

Notes: 
• You can do this fairly effectively with a 

random walk particle code.



The Homogenized Challenge Problem
Suppose a set of particles are released at the center of 
a sphere of radius R. The exit of the particles is 
modeled by a  Robin boundary condition. Compute the 
distribution of exit times for the sphere. 

Notes: 
• You may wish to start out with the 1D version. 
• Make sure you consider       small and large., D
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