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Introduction

To better understand the interaction of a free surface wave motion with moving
bodies, two-dimensional flow of a viscous incompressible fluid past an oscillating
cylinder beneath a free surface is investigated numerically.

Such flows are found in ocean engineering applications and undersea technology.

The transformation between kinetic and potential energies and the coexistence of
viscous and gravity forces at an unknown wavy boundary make the free surface
phenomena difficult to study.

The interaction of a free surface with bluff body wakes has been principally the
subject of experimental studies, see for example:

• Cetiner and Rockwell (2001)
J. Fluid Mech., Vol.427:29-59

• Sheridan, Lin and Rockwell (1997)
J. Fluid Mech., Vol.330:1-30

Computations of nonlinear viscous free surface problems including cylindrical bodies
are relatively few, see for example:

• Reichl, Hourigan and Thompson (2005)

J. Fluid Mech., Vol.533:269-296

• Bozkaya, Kocabiyik, Mironova, Gubanov (2011)
J. Comput. Appl. Math., Vol.235:4780-4795
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Uniform flow past a stationary cylinder

Oppositely signed vortices shed alternatively at either side of the
cylinder at f∗0 to form the von Kármán vortex street (R > 40).

Natural shedding frequency frequecy: f0 = df∗0 /U .
Reynolds number: R = dU/ν

Vortex shedding exerts a periodic resultant force on the body:
x-component: drag force frequency ∼ 2f0; y-component: lift force frequency ∼ f0.

Uniform flow past a cylinder under forced oscillations

Wake structure strongly depends on the amplitude A and (f/f0)

Resonance of cylinder vibration and vortex shedding frequencies is known as lock-on
(for transverse or rotational oscillations: f ∼ f0, for streamwise oscillations: f ∼ 2f0.)

Vortex locked-on modes near the fundamental lock-on region.
- -: vortices shed per Tv .

Williamson and Roshko (1988) J. Fluid Struct. Vol. 2: 355-381
(transverse osc.: 300 6 R 6 103, 0.2 6 A 6 1.8, f/f0 > 0.3)

• Each mode is defined by the number of pairs, “P”,
and single vortices, “S”, shed per Tv

Tv : a single vortex shedding cycle, Tv = kT , k=fraction or integer

2S: two single vortices of opposite sign are shed per Tv

(the classical von Kármán street);
2P: two counter-rotating pairs are shed per Tv ;
P+S: one single and a pair of co-rotating vortices are shed per Tv ;
C: coalescence of vortices either immediately behind

or in the downstream of the cylinder
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Mathematical model

Flow configuration

The cylinder is forced to oscillate at a prescribed amplitude, A∗, and forcing frequency, f∗, in the
streamwise direction

y∗

x∗

h∗

Ω1

Ω2

f ∗

g∗

U

g∗: acceleration due to gravity
d: cylinder diameter
U : free stream velocity
h∗: submergence depth

x∗(t∗): cylinder displacement

Harmonic oscillations of the cylinder:
x∗(t∗) = A∗ cos(2πf∗t∗)

Fluid properties:
ρ1/ρ2 = 1/100, ν1/ν2 = 1
(Reichl, Hourigan and Thompson (2005),
J. Fluid Mech., Vol.533:269-296)

Dimensionless flow parameters

R = Ud/ν2: Reynolds number (ν: kinematic viscosity coefficient)

Fr = U/
√

dg∗: Froude number

h = h∗/d: depth of cylinder submergence

A = A∗/d: forcing amplitude of cylinder

f/f0(= f∗/f∗0 ): forcing-to-natural shedding frequency ratio(f0 = df∗0 /U and f = df∗/U)

t = Ut∗/d: : dimensionless time

p/ε = p∗/ρ2U
2: pressure

ε =

{
ρ1/ρ2 in Ω1,
1 in Ω2.

Kocabiyik/Bozkaya (MUN/METU) IMA7 - Interfacial Fluid Dynamics and Processes Vienna, Austria (June 23-26, 2014) 4 / 34



Mathematical model

Integral form of 2D unsteady governing equations:

dV
dt

+

∫
A

(~u · ~n) dS = 0

d

dt

∫
V

~u dV +

∫
A

(~n · ~u)~u dS = −
1

ε

∫
A∪I

p~n dS +
1

R

∫
A∪I

~n · ∇~u dS +

∫
V

~F dV

~F = (−a1, 1/Fr2 − a2, 0)

~a=(a1, a2, 0): acceleration of the non-inertial frame of reference V: fractional volume open to flow

~u=(u, v, 0): velocity vector A: fractional area open to flow

~n: outward normal vector I: fluid-body interface

Boundary conditions:

cylinder boundary: u = 0, v = 0 inflow: u = 1− v1, v = −v2

top/bottom boundaries:
∂u

∂x
= 0, v = −v2

outflow:
1

R

∂u

∂x
+

h̄

F r2
= p,

∂v

∂x
= 0

(v1, v2, 0): velocity of the non-inertial frame of reference, h̄: height of the fluid at the outflow

Initial conditions:

t = 0 : uniform flow, i.e., u(x, y, 0) = 1− v1, v(x, y, 0) = −v2

Free surface at t = 0 is assumed to be undisturbed.
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Method of solution

Finite volume discretization is used on a fixed non-boundary fitted Cartesian grid

Displacement of the free surface is captured by using the volume of fluid method
(Hirt and Nichols (1981), J. Comp. Phys., Vol.39:201-225) VOF

Free surface advection is performed by the strictly mass conserving volume of fluid
advection method in two-dimensional incompressible flows
(Aulisa, Manservisi, Scardovelli (2003), J. Comp. Phys. Vol.192:355-364) fs advection

Fluid-body interface is discretized using the fractional area/volume obstacle
representation method (Hirt and Sicilian (1985), Flow Science, Inc., New Mexico)
and the cut cell method (Gerrits (2001), Ph.D. Thesis, University Groningen) favor

A second order accurate central-difference scheme is used to discretize the governing
equations. A cell merging procedure is used to preserve a global second-order
accuracy of the spatial discretization. continuity-NS

A coupled sparse linear system in primitive variables is solved using a generalized
minimal residual method to determine the discretized pressure and velocity fields
corresponding to the successive time instants. matrix-structure

First-order explicit forward Euler scheme is used to advance the solution in time.

The simulations are carried out using the CFD code developed by S. Kocabiyik’s
research group at Memorial University. Simulation Workflow
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Free surface interface capturing

Volume of fluid (VOF) method Hirt and Nichols (1981) J. Comp. Phys., Vol.39:201-225

0.56

0.92

0.92 0.561

0 0

0.11 0

1 Free surface interface is reconstructed using VOF function
0 ≤ Ff,i,j ≤ 1 which defines cells that are empty, full, or
partially filled with fluid, f in Ω2:

Ff,i,j : the fractional volume of a computational cell that is

occupied by the fluid (i.e., the ratio of the fluid in each cell)

Interface within each mixed cell is approximated with a
straight line segment

Interface normal is estimated using fluid fractions in

adjacent cells fs reconstruction

Interface line is uniquely defined by its normal and fluid
fraction in its cell

2 The fluid region is advected in time to its new position
with the velocity field: fs advection

the new values of F n+1
f,i,j are computed in all computational

cells based on the old values, F n
f,i,j , and ~un = (un, vn, 0)

Advantages of the VOF method

This method can define sharp interfaces and is robust

Interface topology changes handled automatically

Low memory and computational cost

Implemented in CFD software FLUENT and FLOW3D Method
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Computational grid and time discretization

A Cartesian non-boundary fitted Eulerian grid is used.

A finite volume discretization is applied to computational cells (control volumes)
which are built around discrete grid knots.

Staggered grid representation

vi,j+1

vi,j

ui+1,jui,j pi,j

K0
iK0

i−1

K1
i K1

i+1
K0

i+1

K0
j−1

K0
j

K0
j+1

K2
j+1

K2
j

The staggered grid involves three
different sets of knots: pi,j , ui,j , vi,j

Velocity knots are located on the edges
of computational cells corresponding to
pressure knots

continuity equation cell: (K1
i , K2

j )− (K1
i+1, K2

j+1)

x-momentum equation cell: (K0
i−1, K2

j )− (K0
i , K2

j+1)

y-momentum equation cell: (K1
i , K0

j−1)− (K1
i+1, K0

j )

Time discretization

First-order explicit forward Euler scheme

tn+∆t∫
tn

I dt = ∆tI(tn+1)

n: iteration counter

∆t = tn+1 − tn: time step Method

Kocabiyik/Bozkaya (MUN/METU) IMA7 - Interfacial Fluid Dynamics and Processes Vienna, Austria (June 23-26, 2014) 8 / 34



Geometry labeling

Cell labeling is used to distinguish cells in which (i) the governing equations are solved and
(ii) the boundary conditions are satisfied

Each pressure cell is labeled based on a value of fractional volume open to flow, V/V , in
this cell

Edge of pressure cell on which u- or v-velocity knot is located (velocity cell) is labeled

according to the types of pressure cells this edge belongs to Method

B

B

B

X

XXFF

F F

F F

F F F

F FF F

FF

F

D D D DDD

D

D

D

D

D

F F

F

Pressure cells labels

F(luid): Cells for which V/V > 0.5

B(oundary): Fluid-body interface cells

D(omain): Computational domain boundary cells

(e)X(cluded): Cells occupied by the body

Continuity equation is discretized in all the F cells

Value of pressure is set to zero in B, D and X knots

Velocity cells labels

FF, BF, BX, DF, BB, DD, XX

Navier-Stokes equations are discretized in all the FF cells

Values of velocities BF, BB, BX and XX are set to zeros

DF and DD velocities are used to apply boundary
conditions at the computational domain boundary
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Discretization of the continuity equation

When the cylinder moves through the fixed staggered grid, the pressure cell which belongs
to the cylinder at time t = tn may become the fluid cell at time t = tn+1. The continuity
equation needs to be discretized in this pressure cell.

Since at time t = tn the velocities in the pressure cell do not satisfy the mass balance
exactly, the pressure field has to do extra work to restore the mass balance in the pressure
cell at time t = tn+1. This extra work seems to reflect as a spike in the pressure:

Fekken (2004) and Kleefsman (2005) [PhD Thesis, University of Groningen]

The pressure spikes are eliminated by using a non-inertial frame of reference:
dV
dt

+

∫
A

(~n · ~u) dS = 0

vi,j

ui+1,j

vi,j+1

pi,j
ui,j

A0

A3

A1

A2

In non-inertial frame of reference
dVpi,j

dt
= 0

Convective term is approximated as a sum of
convective fluxes, fAk , through each edge aperture∫

A

~n · ~u dS =

3∑
k=0

fAk , fAk =

∫
Ak

~n · ~u dS

where

fA0 = − (ui,jA0)
n+1 , fA1 = (ui+1,jA1)

n+1 , fA2 = − (vi,jA2)
n+1 , fA3 = (vi,j+1A3)

n+1

The resulting linear equation Method

− (ui,jA0)
n+1 + (ui+1,jA1)

n+1 − (vi,jA2)
n+1 + (vi,j+1A3)

n+1 = 0
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Discretization of the Navier-Stokes equations

d

dt

∫
V

u dV +

∫
A

(~n · ~u)u dS = −1

ε

∫
A∪I

pn1 dS +
1

R

∫
A∪I

~n · ∇u dS +

∫
V

F1 dV

A3

A0 A1

ui,j

ui,j−1

ui−1,j ui+1,j

ui,j+1

D

F

G

A B

E

C

FF cell borders FF, DF or DD cell
Velocities and their normal derivatives at the
edges of velocity cells are approximated using a
linear interpolation between fluid neighbour
velocity knots (standard discretization)

FF cell borders BF cell (neighbour velocity may be
located in the region occupied by the solid body)

1 Cell merging procedure is used
2 Velocities and their normal derivatives at the

edges of velocity cells are approximated
separately for each edge of FF cell

3 A second-order approximation to diffusive and
convective fluxes is obtained using a

two-dimensional B-spline interpolation

The resulting linear equation Method

C0u
n+1
i,j + C1u

n+1
i−1,j + C2u

n+1
i+1,j + C3u

n+1
i,j−1 + C4u

n+1
i,j+1 + C5p

n+1
i−1,j + C7p

n+1
i,j = C8
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Discretization of the unsteady term in the Navier-Stokes equations

A3

A0 A1

ui,j

ui,j−1

ui−1,j ui+1,j

ui,j+1

D

F

G

A B

E

C

Time derivative is approximated using the midpoint rule
as

d

dt

∫
V

u dV ≈
d

(
ui,jVui,j

)
dt

where, in general,

Vui,j = VFF +

N′∑
i=0

VBF, N ′ = 0, . . . , 3.

N ′: number of slaves merged with the master cell, VFF: volume aperture of the master cell,

VBF: volume aperture of the slave cell

In a situation shown in figure above,

the master cell is cut by the cylinder geometry

the cell has the only slave

Vui,j = VABCDEG + VGEF

Thus,
d

(
ui,jVui,j

)
dt

≈
un+1

i,j Vn+1
ui,j

− un
i,jVn

ui,j

∆t
,
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Averaging of the density

Free surface is defined in the computational cells where a rapid change in density, ρ,
and viscosity, µ, occurs

Density in the vicinity of the phase interface is computed as

ρ′ =
F n+1

a ρ1 + F n+1
f ρ2

V̄n+1

F n+1
a and F n+1

f : fractions of the air and the fluid in the velocity cell

V̄n+1: fractional volume aperture

F n+1
a is calculated from F n+1

f and F n+1
b as

F n+1
a = 1− (F n+1

f + F n+1
b )

Dimensionless counterpart of the averaged density, ρ′, can be written as

εn+1 =
ρ′

ρ2
=

ρ1/ρ2F
n+1
a + F n+1

f

V̄n+1

F n+1
a = 0, εn+1 = 1: momentum equation is discretized for the fluid phase

F n+1
f = 0, εn+1 = ρ1/ρ2: momentum equation is discretized for the air phase
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Free surface interface reconstruction

Piecewise linear interface (PLIC) algorithm

Free surface interface is approximated with a straight line segment:

~n~x + d̄ = 0,
~n: unit outward normal (points outward the fluid, f , in Ω2); d̄: the distance from origin

Computation of the normal vector, ~n: Gerrits (2001), Ph.D. Thesis, Univ. Groningen

K0
j+1

K0
j

K0
j−1

K0
i−1 K0

i K0
i+1

F

Ff,i−1,j+1 Ff,i,j+1 Ff,i+1,j+1

Ff,i−1,j Ff,i,j Ff,i+1,j

Ff,i−1,j−1 Ff,i,j−1 Ff,i+1,j−1

Location of the free-surface interface is reconstructed from the
local Ff data at any time in the solution

~n is determined by approximating:

~n = ∇Ff

in each cell pi,j having 0 < Ff,i,j < 1 with respect to eight
neighbours surrounding the cell.

The calculated normal vector, ~n, is normalized: ~n =
∇Ff

|∇Ff |

Computation of the line distance, d̄: Rider and Kothe (1998) J. Comput. Phys., Vol.141:112-152

The value of d̄ is constrained by mass conservation: resulting line passes through the
computational cell with a truncation volume equal to the cell volume aperture, V, so that

V(d̄)− V = f(d̄)

V(d̄): truncation volume; f(d̄): non-linear function

Brent’s root finding algorithm is used to compute d̄:
R.P. Brent (1973) Algorithms for Minimization without Derivatives.

New Jersey: Prentice-Hall free surface interface capturing
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Free surface interface advection

Geometrical area preserving VOF advection method:

Aulisa, Scardovelli, Manservisi and Zaleski (2003) J. Comp. Phys. Vol.192:355-364.

If A is the area of 2D domain occupied by the fluid (in Ω2)within the computational cells
then, at time t = tn the area of the fluid, f, in Ω2 in each of the cells can be written as

F n
f,i,jAi,j

.Geometrically, the conservation of mass in this domain means that the total area at each
time step is conserved so that ∑

i,j

F n+1
f,i,j Ai,j =

∑
i,j

F n
f,i,jAi,j .

This advection equation is satisfied explicitly by introducing linear mappings, Πx and Πy , in
both coordinate directions. The combination of two linear mappings Πxy = Πx + Πy is
used to transform the fluid region at time t = tn into the fluid region at time t = tn+1.

D

A

C

B

C ′′

B′′

A′

C ′

B′

A′′

D′

D′′

vi,j

vi,j+1

ui,j ui+1,j

D C

A B

B′′A′′

C ′′D′′

(c) Πxy(b) Πy(a) Πx

AA′

DD′

B′B

C ′C

ui,j ui+1,j

A

D
vi,j

vi,j+1

C

B

1 Fluid polygons located in the rectangle A′B′C′D′ are identified.
2 Linear mapping along the x-direction maps (compresses) A′B′C′D′ onto ABCD

3 Linear mapping along the y-direction maps (expands) ABCD onto A′′B′′C′′D′′

Total volume of the fluid in p(i, j) is calculated at t = tn+1 as a sum of all fluid contributions

from four neighbour cells (left, right, top, bottom) as well as the cell p(i, j) itself.
Method
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Numerical simulation workflow

FINISH

START

Build a system of linear equa-
tions

Advect a fluid region

Compute V0
i,j, A0

i,j

yesno

Reconstruct free surface and
fluid-body interfaces

Label pressure cells and
velocity knots

Time iteration

Initialization

Label pressure cells and ve-
locity knots

Reconstruct free surface and
fluid-body interfacesCompute Vn+1

i,j , An+1
i,j

tn+1 > tend ?

Compute un+1
i,j , vn+1

i,j , pn+1
i,j

Set u0
i,j, v0

i,j, F 0
f,i,j

Compute F n+1
f,i,j

Method
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Structure of the matrix of the linear system

Matrix is sparse with size 3×N ×M

N and M : number of knots along x- and y-axes

e.g. N = 200 and M = 160: 3×N ×M = 96000

GMRES method with ILUT preconditioner is used

Trilinos library is used

Simulations up to t = 100 require about 504 hours

Upper block: Built of the discrete continuity equations added for pi,j

Non-zero elements in line “1”: pi,j located in the cylinder/at the domain boundary

Lines “2”: ui,j ; “3”: ui+1,j ; “4”: vi,j ; “5”: vi,j+1

Middle block: Built of the discrete momentum equations added for ui,j

Lines “1”: ui,j ; “2”: ui−1,j ; “3”: ui+1,j ; “4”: ui,j−1; “5”: ui,j+1

Lines “6”: pi−1,j ; “7”: pi,j

Lower block: Built of the discrete momentum equations added for vi,j

Lines “1”: vi,j ; “2”: vi−1,j ; “3”: vi+1,j ; “4”: vi,j−1; “5”: vi,j+1

Lines “6”: pi,j−1; “7”: pi,j
Method computational mesh
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Computational mesh and numerical parameters

Computational mesh

x1 x2 x3 x4

y4

y3

y2

y1 D2

D1

D1 region: uniform fine grid; D2 region: exponentially expanding grid

Exponential distribution of N knots, {xi}N
i=1, in [xa, xb]:

xi = xa + (xb − xa) eaςi−1
ea−1

, ςi = i−1
N−1

, i = 1, . . . , N

ςi: uniform distribution of N knots in the interval [0, 1]

a: computed from f(a) = ∆h− (xb − xa) ea/(N−1)−1
ea−1

using Brent’s algorithm (1973) B

a: chosen so that the first grid step of the exponential grid in the grids overlap region

equals to the uniform grid step, ∆h

Typical numerical parameters

x1 x2 x3 x4 y1 y2 y3 y4

Length 17d 3d 7d 23d 16d 4d 4d 16d

Number of knots 20 30 80 50 20 42 42 20
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Spatial and temporal accuracy tests

Flow past a stationary cylinder in the absence of a free surface at R = 200 is solved
to evaluate the spatial and temporal accuracies of the method

The near wake grid resolution is examined by using three different grids with
40, 60, 90 cells per cylinder diameter. The time step ∆t = 0.005 is chosen for the
grid resolution test

The sensitivity of the accuracy of computations to the value of the time step is
tested using the same grid (60 cells per cylinder diameter) for three different values
of the time step, ∆t = 0.005, 0.0075, 0.01

Parameter Grid cells per cylinder diameter ∆t

Value 40 60 90 0.01 0.0075 0.005
f0 0.194 0.194 0.195 0.194 0.195 0.196

CL,max 0.659 0.663 0.673 0.668 0.669 0.671

ĈD 1.297 1.300 1.319 1.305 1.307 1.311
The effects of the near wake grid resolution and the time step, ∆t, on the maximum lift coefficient, CL,max;

the mean drag coefficient, ĈD ; the natural vortex shedding frequency, f0, for the case of uniform flow past a

stationary cylinder in the absence of a free surface at R = 200.

Increase in the number of cells per cylinder diameter from 60 to 90 has a negligible
effect on the computed quantities.

The grid resolution of 60 cells per diameter and ∆t = 0.0075 found to be sufficient
to capture the physical development of the flow in the boundary layer region
accurately.
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Numerical algorithm validation

Uniform flow past a streamwise oscillating cylinder in the absence of a free surface

The equivorticity lines at R = 855: A = 0.13
(from top to bottom: f/f0 = 0.5, 1.0, 2.0, 3.0,
4.0): experimental results of Ongoren and Rockwell
(1988), J. Fluid Mech., Vol.191:225-245 (left); nu-
merical results of Al-Mdallal (2004), Ph.D. thesis,
Memorial Univ. (middle); present results (right).

The equivorticity lines at R = 100: A = 0.14,
f/f0 = 2 (from top to bottom: t/T0 = 1/4, 1/2,
3/4, 1.0 (T0 = 5.91)): numerical results of Su, Lai
and Lin (2007), Comp. Fluids, Vol.36:313-324 (left);
present results (right).

Reference Present Su, Lai and Lin (2007) Hurlbut, Spaulding and White (1982)
CL,max 0.92 0.97 0.95

ĈD 1.70 1.70 1.68

The comparison of the maximum lift coefficient, CL,max and the mean drag coefficient, ĈD , at R = 100:
A = 0.14, f/f0 = 2.0 with the numerical results of Su, Lai and Lin (2007) and Hurlbut, Spaulding and White
(1982), J. Fluids Eng., Vol.104:214-222 .
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Numerical algorithm validation

Uniform flow past a stationary cylinder in the presence of a free surface at R = 180

The equivorticity patterns and the free surface deformations for h = 0.55: Fr = 0, 0.3, 0.4, 0.6
(from top to bottom). Gubanov (2006) MSc thesis, Memorial University (left), Reichl, Hourigan

and Thompson (2005), J. Fluid Mech., Vol.533:269-296 (middle), present (right).
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Uniform flow past a streamwise oscillating cylinder at at R = 200: A = 0.13, f/f0 = 1.5, 2.5, 3.5

The effect of the free surface inclusion at Fr = 0.4, h = 0.5 on vortex shedding modes and their
periods, Tv (“∗”: quasi-locked-on modes)
. F r = 0.4, h = 0.5 h = ∞

f/f0 Mode Tν Mode Tν

4S∗ (T ≤ t ≤ 20T ); 3T

1.5 non-locked - 2P 2T

(21T ≤ t ≤ 29T )
C(6S)∗ (5T ≤ t ≤ 33T ); 7T

2.5 non-locked - C(6S)∗ 8T

(34T ≤ t ≤ 49T )
C(4S)∗(7T ≤ t ≤ 40T ); 7T C(2S)∗(within 71T ) 4T

3.5 non-locked - non-locked -

(41T ≤ t ≤ 68T ) (72T ≤ t ≤ 104T )

For each f/f0, a transition occurs from quasi-periodic state to non-periodic state.

The vorticity layers origination from the free surface and the upper surface of the cylinder
are central determining the wake states.

The coalescence between the vortices occurs f/f0 = 2.5, 3.5.

A switchover in the vortex shedding modes is observed as h decreases.

4S

6S

per 3T

per 7T

T2T

2S2S

3T4T

3S3S

New vortex shedding modes:

• 4S: four single vortices are shed

per Tv(= 3T ) for f/f0 = 1.5, 3.5

• 6S: six single vortices are shed

per Tv(= 7T ) for f/f0 = 2.5
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The equivorticity patterns (left) and the pressure contours (right) over 3T , at R = 200:
A = 0.13, f/f0 = 1.5, F r = 0.4, h = 0.5 (26.94 ≤ t ≤ 37.04) i.e., (8T, 11T ) (T ≈ 3.367).

0T

T/2

T

3T/2

2T

5T/2

3T

Figure:
The

equivorticity patterns (left) and the pressure contours
(right) in the near wake over three periods of cylinder
oscillation, 3T , at R = 200: A=0.13, f/f0 = 1.5 when
Fr = 0.4 and h = 0.5 [T ≈ 3.367, 26.936 ≤ t ≤ 37.037:
(8T, 11T )]. The quasi-locked-on 4S mode, per 3T , is
observed (t ≤ 20T ).

The vortex shedding mode is quasi-locked-on 4S
mode, per 3T (within 20T ): four single vortices are
shed per 3T .

Positive and negative vortices developed in the
previous vortex shedding cycle are shed at t ≈ T/2
and t ≈ T , respectively.

The positive vortex developed over 0T ≤ t ≤ 3T/2
attaches to the positive vortex from the free surface,
and envelops the negative vortex in the upper vortex
shedding layer.

These vortices are shed from the lower and upper part
of the cylinder at t ≈ 2T and t ≈ 3T , respectively.

The highest pressure region seems to switchover
between the front of the cylinder and the upper left
side of the cylinder.

The shedding of the negative vortices at t ≈ T and
t ≈ 3T seems to induce a local free surface rising due
to the development of sufficiently high pressure region

At t = 0T the lowest pressure region occurs behind

the cylinder and the bottom of the cylinder and then it

changes its location to the top of the cylinder at

t = 5T/2.
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The time variation of the lift coefficient, CL, and the cylinder displacement, x(t), and
Lissajous patterns of CL at R = 200: A = 0.13, f/f0 = 1.5, Fr = 0.4

f/f0 = 1.5, h = 0.5

CL(t), x(t)

CL(x): Quasi-periodic CL(x): Non-periodic

f/f0 = 1.5, h = ∞
CL(t), x(t)

CL(x): Periodic state

In the presence of a free surface:

The transition of the flow regime from the
quasi-periodic state into the non-periodic state is
observed.

The traces of the lift coefficient are almost periodic
over 3T within first 20T , and then they become
non-persistent when the switching time is reached at
approximately t = 67.34.

The Lissajous trajectories of CL shows that there is a
loss of phase-locking. This confirms that the
fluctuating lift coefficient is quasi-phase-locked to the
cylinder motion in the quasi-periodic state.

In the absence of a free surface:

The traces of CL show repeatable patterns over 2T .
This observation is also suggested by the corresponding
Lissajous patterns which indicates lock-on between the
cylinder motion and the fluctuating CL.

The hystresis loops are mostly confined in the lower
half plane at h = 0.5, which shows that the presence
of the free surface breaks the symmetry observed in
the case when h = ∞.
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The link between the changes in the wake dynamics of the cylinder and the lift coefficient, CL:
R = 200, A = 0.13, f/f0 = 2.5, F r = 0.4 at h = 0.25, 0.5, 0.75.

CL, f/f0 = 2.5

[C(2S) + S]∗

C(6S)∗

C(6S)∗

h = 0.25

h = 0.5

h = 0.75

Figure: Dots on CL and x(t) traces (left) indicate the time, t, at which vorticity (middle) and pressure (right) snapshots are obtained,
(T ≈ 2.02, t = 15T ).

At h = 0.25: CL displays almost a sinusoidal trace during the development of C(2S) + S mode whereas
two peaks per 2T develop on the lift traces with an increase in h during the development of C(6S) modes.

CL indicates almost similar patterns per 2T at h = 0.5 and h = 0.75 with a phase shift, which is confirmed
by the corresponding vorticity patterns and pressure contours which are are almost the mirror images of each
other due to the mentioned phase shift for CL, indicating a change in the direction of energy transfer.

This shift makes a substantial difference in the overall lift behaviour. CL changes from an extreme negative
and positive during the development of C(2S) + S and C(6S) modes when h = 0.25, h = 0.75,
respectively.

The high pressure is associated with the front stagnation point whereas the low pressure concentrates in the
lower or upper vortex shedding layers. As the cylinder submergence depth increases from 0.25 to 0.5, the
low pressure concentration is mostly shifted from the upper vortex shedding layer to the downstream side of
the cylinder. On
the other hand, the high pressure remains fixed in the stagnation region for both h = 0.25 and h = 0.5.Kocabiyik/Bozkaya (MUN/METU) IMA7 - Interfacial Fluid Dynamics and Processes Vienna, Austria (June 23-26, 2014) 25 / 34



Summary and conclusions

Two-dimensional flow past a circular cylinder subject to forced streamwise oscillations
beneath a free surface is investigated based on a two fluid model at R = 200, A = 0.13,
Fr = 0.4 for f/f0 = 1.5, 2.5, 3.5 and h = 0.25, 0.5, 0.75.

The inclusion of a free surface seems to stabilize the flow for a short period of time such that
the near wake vorticity produces quasi-locked-on modes of vortex shedding and then, the
transition of the near wake to the non-periodic state is observed. A similar phenomena has
been reported in the experimental study by Cetiner and Rockwell [JFM (2001) 427:29-59].

The resulting new modes are the combination of the two and three 2S (or C(2S)) classical
modes i.e., 4S (or C(4S)) and C(6S) modes. In addition, the mode C(2S) + S, which is
similar to C(2S) mode with only one additional vortex shed from the free surface, is
observed.

The lift coefficient changes from an extreme negative during the development of C(2S) + S
shedding when h = 0.25 to an extreme positive during the C(6S) shedding when h = 0.75.
This substantial difference in the overall lift behaviour is due to a change in the direction of
energy transfer.

The presence of a free surface markedly influences the mean lift force and prolongs the
duration of vortex shedding process. These observations suggests that free surface could be
used to bring control on the wake structure.

Irrespective of the values h and f/f0, the total mechanical energy transfer is negative,
indicating the energy transfer from cylinder to fluid unlike the transverse oscillation case.
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Mathematical model

A special integral form of governing equations (when a solid body is present) is derived by
extending the Reynolds transport theorem and then applying it to control volume containing
a fluid-body interface Derivation summarydV∗

dt∗
+

∫
A∗

(~n · ~u∗) dS
∗

= 0

d

dt∗

∫
V∗

~u
∗

dV
∗

+

∫
A∗

(~n · ~u∗)~u∗ dS
∗

= −
1

ρ

∫
A∗∪I∗

p
∗
~n dS

∗
+ ν

∫
A∗∪I∗

~n · ∇~u
∗

dS
∗

+

∫
V∗

~g
∗

dV
∗

which are valid for a class of viscous flows including free surface flows with arbitrarily
moving bodies. Their derivation is based on the theory of generalized functions:

Farassat (1994), NASA Tech. Rep. 3428

and the FAVOR technique:

Hirt (1993), J. Wind Eng. Ind. Aerod., Vol.46-47:327-338

. 1 In FAVOR technique, geometries are embedded in the mesh by setting the area
fractions on the control volume faces along with the volume fraction open to flow.
This makes the geometry and the grid completely independent of each other, and, as a

result, complex solid body can be generated. Method

2 This technique requires a relatively large number of cells for numerical purposes.

Â∗
y

V̂∗
A∗

1

A∗
3

(a) (b) (c)

y∗

x∗

A∗
0

A∗
2

Â∗
x

V ∗ V ∗

V∗

Mathematical model equations
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Mathematical model

Â∗
y

V̂∗
A∗

1

A∗
3

(a) (b) (c)

y∗

x∗

A∗
0

A∗
2

Â∗
x

V ∗ V ∗

V∗

(a) Typical solid body surface within a Cartesian grid, (b) typical computational cell, V ∗, which

includes areas, A∗i (i = 0, 1, 2, 3) and volume, V∗, open to flow within V ∗, (c) location of Â∗x, Â∗y
and V̂∗ within the computational cell, V ∗. The solid body is shown in gray.

Â∗x, Â∗y and V̂∗ are defined as

V̂∗ = lim
V ∗→0

V̄∗, Â∗x = lim
S∗x→0

Ā∗x, Â∗y = lim
S∗y→0

Ā∗y

V̄∗ =
1

V ∗

∫
V ∗

H dV
∗
, Ā∗x =

1

S∗x

∫
S∗x

H dS
∗
, Ā∗y =

1

S∗y

∫
S∗y

H dS
∗

H(~x∗) is the Heaviside function that is equal to unity in the fluid region and zero in the solid body.

Special integral form of governing equations can be obtained from the differential form of
FAVOR equations using∫

V ∗

V̂∗ dV
∗

=
V∗

V ∗
,

∫
S∗

Â∗x dS
∗

=
A∗0
S∗0

,

∫
S∗

Â∗y dS
∗

=
A∗2
S∗2

.
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Summary of the derivation of differential and integral forms of the FAVOR equations

Traditional approaches consider the integral form of the governing equations over control
volumes containing only fluid. In this work, special integral form of the governing equations
over control volumes containing a fluid-solid interface.

The derivation of the differential and integral forms of the FAVOR equations: (Hirt (1993), J. Wind Eng. Ind.
Aerod., Vol.46-47:327-338 (left) and present work (right).

Mathematical model
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Discretization of the velocity derivative in the diffusive term

Points used to approximate
∂u

∂x
are constructed differently in each of the two possible

situations:

u2

ui,j

u1

ui,jui−1,j

(a) (b)

ui−1,j

K0
i−1 K0

i

u2 u1

(x1, y1)(x2, y2)

(x0, y0) (x1, y1)

(x′1, y
′
1)(x2, y2)

(x0, y0)

Situation (a):

1 Reconstruct the line parallel to the x-axis which passes through the point (x0, y0)

2 If x1 − x0 6
K0

i −K0
i−1

2
, then (x1, y1) is reflected into (x2, y2)

3 u(x2, y2): B-spline interpolation; u(x1, y1): no-slip condition;
∂u

∂x

∣∣∣∣
(x0,y0)

≈
u1 − u2

x1 − x2

4 No line intersection or x1 − x0 >
K0

i −K0
i−1

2
: points located at x1 − x0 from (x0, y0) are

used

Situation (b):

1 Points (x′1, y′1) and (x2, y2) are used for the derivative approximation

2 B-spline interpolation is used to calculate u1(x′1, y′1) and u2(x2, y2);
∂u

∂x

∣∣∣∣
(x0,y0)

≈
u1 − u2

x′1 − x2
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Discretization of the Navier-Stokes equations

d

dt

∫
V

u dV +

∫
A

(~n · ~u)u dS = −1

ε

∫
A∪I

pn1 dS +
1

R

∫
A∪I

~n · ∇u dS +

∫
V

F1 dV

A3

A0 A1

ui,j

ui,j−1

ui−1,j ui+1,j

ui,j+1

D

F

G

A B

E

C

FF cell borders FF, DF or DD cell.
Velocities and their normal derivatives at the
edges of velocity cells are approximated using a
linear interpolation between fluid neighbour
velocity knots (standard discretization).

FF cell borders BF cell (neighbour velocity may be
located in the region occupied by the solid body).

1 Cell merging procedure is used.
2 Velocities and their normal derivatives at the

edges of velocity cells are approximated
separately for each edge of FF cell.

3 A second-order approximation to diffusive and
convective fluxes is obtained using a

two-dimensional B-spline interpolation.

The resulting linear equation

C0u
n+1
i,j + C1u

n+1
i−1,j + C2u

n+1
i+1,j + C3u

n+1
i,j−1 + C4u

n+1
i,j+1 + C5p

n+1
i−1,j + C7p

n+1
i,j = C8

Method
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Cell merging algorithm

Many studies exclude BF cells from consideration and apply the no-slip condition to
calculate BF-velocity.

In this work, the cell merging technique is used to discretize the Navier-Stokes equations in
such FF cells to ensure that global second-order accuracy is preserved.

FF

BF

BF cell can border more than one FF cell

For such BF cell, the master cell is chosen to be the
neighbour FF cell with the largest common area
aperture

Choice of master cells guarantees that the slave cell
may have only one master cell

Each master cell can have from one to four slave cells

FF is the master cell for neighbouring BF cell

Slave cell becomes attached to this master cell

This results in the reshaping of the master cell

Depending on the location and the local orientation of the fluid-body interface, cells of a

wide variety of shapes can be formed Discr. N-S. eq
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Algorithm of the B-spline interpolation

u1 u2 u3 u4

u5 u6 u7

u9

(x0, y0)

u10

u8

A
B

D

F

C

E

Let (x0, y0) be the point at which the
u-velocity must be interpolated

Consider a 3× 3 block of the neighbouring
cells

Points of intersection of the grid with the
fluid-body interface (A to F ) are used to
define the locations of the fluid-body
interface velocities

Values of velocities at the points of intersection are calculated using the no-slip
boundary condition (set to the velocities of the cylinder calculated at points
A, . . . , F )

Interface velocities and the neighbouring FF velocities (u1, . . . , u10 in an example
case) are calculated at time t = tn

These velocities are used to reconstruct the B-spline surface

Finally, the value of the u-velocity in the point (x0, y0) can be calculated Discr. N-S. eq
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What is a free surface?

n
τ

R
fluid

air

interface

Free surface represents interface between the
air and the fluid

Interface stress balance condition is
stressair + stressfluid + stressinterface = 0

For incompressible Newtonian fluid

Stressi = −p∗δij~nj +µ

(
∂~u∗j
∂~x∗i

+
∂~u∗i
∂~x∗j

)
~nj Stressinterface = σ

(
1
R
)
(−~ni)+∇σi,

δij : Kronecker delta, σ: surface tension, R: radii of curvature

ρfluid � ρair ⇒ p∗air = const

In Cartesian coordinates stress balance conditions can be written as

2µ

(
n1n1

∂u∗

∂x∗
+ n1n2

(
∂u∗

∂y∗
+

∂v∗

∂x∗

)
+ n2n2

∂v∗

∂y∗

)
= p∗ − p∗air +

σ

R

2n1τ1
∂u∗

∂x∗
+ (n1τ2 + n2τ1)

(
∂u∗

∂y∗
+

∂v∗

∂x∗

)
+ 2n2τ2

∂v∗

∂y∗
= 0

Kocabiyik/Bozkaya (MUN/METU) IMA7 - Interfacial Fluid Dynamics and Processes Vienna, Austria (June 23-26, 2014) 34 / 34


	Mathematical Model
	Method of Solution

