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1 Introduction

The solution of partial differential equations (PDEs) with disparate space and
time scales often benefit from the use of nonuniform meshes and adaptivity
to successfully track local solution features.

In this paper we consider the problem of grid generation using the so–
called equidistribution principle (EP) [3] and domain decomposition (DD)
strategies. In the time dependent case, the EP is used to evolve an initial
(often uniform) grid by relocating a fixed number of mesh nodes. This leads to
a class of adaptive methods known as r–refinement or moving mesh methods.
A thorough recent review of moving mesh methods for PDEs can be found in
the book [11].

In general, the appropriate grid for a particular problem depends on fea-
tures of the (typically unknown) solution of the PDE. Here we will focus on
the grid generation problem for the time independent, given function u(x)
of a single spatial variable x ∈ [0, 1]. Given some positive measure M(x) of
the error or difficulty in the solution u(x), the EP requires that the mesh
points are chosen so that the error contribution on each interval [xi−1, xi] is
the same. The function M is known as the monitor or mesh density function.
Mathematically, we may write this as∫ xi

xi−1

M(x̃) dx̃ ≡ 1
N

∫ 1

0

M(x̃)dx̃ or
∫ x(ξi)

0

M(x̃) dx̃ =
i

N
θ ≡ ξiθ, (EP)

where x(ξi) = xi and θ ≡
∫ 1

0
M(x̃) dx̃ is the total error in the solution. The

EP defines a co-ordinate transformation between the physical co–ordinate x
and underlying computational co–ordinate ξ. This will naturally concentrate
mesh points where the error in the solution is large.

Differentiating the continuous formulation of EP gives the required mesh
transformation, x(ξ), as the solution of the nonlinear boundary value problem
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d

dξ

{
M(x(ξ))

d

dξ
x(ξ)

}
= 0, x(0) = 0 and x(1) = 1. (1)

We will assume (1) has a unique solution, see [8] for details. In [8] the
authors consider the solution of (1) and time dependent extensions using
classical parallel, optimized and optimal Schwarz methods. See [2, 13, 14,
12, 4, 1, 15, 5, 6] for a discussion of DD methods applied to other nonlinear
PDEs. In this paper we continue the work of [8] by providing details of the
nonlinear and linearized alternating Schwarz approaches. The reader is also
referred to the experimental papers [10, 9, 7] which proposed various strategies
to couple DD and moving meshes.

In Section 2 we propose a new nonlinear alternating Schwarz method to
solve (1) and proves convergence in L∞. In Section 3 we avoid the nonlinear
subdomain problems and propose and analyze a linearized alternating Schwarz
algorithm. Brief numerical results are presented in the final section.

2 A Nonlinear Alternating Schwarz Method

In [8] we consider the solution of (1) by a parallel, classical nonlinear Schwarz
iteration. On each subdomain a nonlinear BVP is solved and Dirichlet trans-
mission conditions are used at the subdomain interfaces. Convergence of the
iteration can be accelerated if we are willing to compute sequentially. Consider
the nonlinear alternating Schwarz iteration

(M(xn
1 )xn

1,ξ)ξ = 0, ξ ∈ Ω1 (M(xn
2 )xn

2,ξ)ξ = 0, ξ ∈ Ω2

xn
1 (0) = 0 xn

2 (α) = xn
1 (α) (2)

xn
1 (β) = xn−1

2 (β) xn
2 (1) = 1,

where Ω1 = (0, β) and Ω2 = (α, 1) with α < β.
Direct integration and enforcing the boundary conditions gives the follow-

ing implicit representation of the subdomain solutions.

Lemma 1. The subdomain solutions on Ω1 and Ω2 of (2) are given implicitly
as ∫ xn

1 (ξ)

0

M(x̃) dx̃ =
ξ

β

∫ xn−1
2 (β)

0

M(x̃) dx̃.

and ∫ xn
2 (ξ)

0

M(x̃) dx̃ =
ξ − 1
α− 1

∫ xn
1 (α)

0

M(x̃) dx̃ +
ξ − α

1− α

∫ 1

0

M(x̃) dx̃.

Let ‖ · ‖∞ denote the usual L∞ norm. We now relate xn
1,2 to xn−1

1,2 and obtain
the following result.
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Theorem 1. Assume M is differentiable and there exists positive constants a
and A satisfying

0 < a ≤ M(x) ≤ A < ∞.

Furthermore, we assume (1) has a unique solution. The alternating Schwarz
iteration (2) converges for any initial guess x0

2(β) and we have the error esti-
mates

||x− xn+1
1 ||∞ ≤ ρn A

a2
|x(β)− x0

2(β)|, ||x− xn+1
2 ||∞ ≤ ρn A

a2
|x(α)− x0

1(α)|,

with contraction factor ρ := α
β

1−β
1−α < 1.

Proof. Evaluating the representation of xn
1 at ξ = α and using the expression

for xn−1
2 (β) we have∫ xn

1 (α)

0

M dx̃ =
α

β

{
β − 1
α− 1

∫ xn−1
1 (α)

0

M dx̃ +
β − α

1− α

∫ 1

0

M dx̃

}
.

Defining the two quantities

Kn
1 =

∫ xn
1 (α)

0

M(x̃) dx̃ and C =
∫ 1

0

M(x̃) dx̃,

we obtain the linear iteration

Kn
1 =

α

β

β − 1
α− 1

Kn−1
1 +

α

β

β − α

1− α
C. (3)

This iteration converges with rate ρ := α
β

1−β
1−α < 1, and has the limit

K∗
1 =

α

β

1− β

1− α
K∗

1 +
α

β

β − α

1− α
C =⇒ K∗

1 = αC. (4)

Since the monodomain solution also satisfies∫ x(α)

0

M(x̃) dx̃ = αC,

and M(x) ≥ a > 0, we have convergence at the interface to the correct limit.
Subtracting (3) from (4) we have∫ x(α)

xn
1 (α)

M(x̃) dx̃ = ρn

∫ x(α)

x0
1(α)

M(x̃) dx̃ =⇒ |x(α)−xn
1 (α)| ≤ ρn A

a
|x(α)−x0

1(α)|,

where the relation on the right follows from the boundedness of M . Likewise∫ x(β)

xn
2 (β)

M(x̃) dx̃ = ρn

∫ x(β)

x0
2(β)

M(x̃) dx̃ =⇒ |x(β)−xn
2 (β)| ≤ ρn A

a
|x(β)−x0

2(β)|.
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Combining these results and using the boundary condition at ξ = β˛̨̨̨
˛
Z x(ξ)

xn+1
1 (ξ)

M(x̃) dx̃

˛̨̨̨
˛ ≤ ξ

β

˛̨̨̨
˛
Z x(β)

xn+1
1 (β)

M(x̃) dx̃

˛̨̨̨
˛ =

ξ

β

˛̨̨̨
˛
Z x(β)

xn
2 (β)

M(x̃) dx̃

˛̨̨̨
˛ ≤ ξ

β
ρnA|x0

2(β)− x(β)|,

hence |xn+1
1 (ξ)− x(ξ)| ≤ ρn A

a |x
0
2(β)− x(β)| and convergence in L∞ follows.

The proof on subdomain 2 is similar. ut

3 A Linearized Alternating Schwarz Method

We may avoid the nonlinear solves on each subdomain in (2) by considering
a linearized alternating Schwarz iteration,

(M(xn−1
1 )xn

1,ξ)ξ = 0, ξ ∈ Ω1 (M(xn−1
2 )xn

2,ξ)ξ = 0, ξ ∈ Ω2

xn
1 (0) = 0, xn

2 (α) = xn
1 (α), (5)

xn
1 (β) = xn−1

2 (β), xn
2 (1) = 1.

At iteration n we evaluate the nonlinear diffusion coefficient M using the
solution obtained from the previous iterate and obtain the updated solution
by a single linear solve on each subdomain. A simple calculation yields the
following representation of the subdomain solutions.

Lemma 2. The subdomain solutions of (5) are given by

xn
1 (ξ) = xn−1

2 (β)

∫ ξ

0
dξ̃

M(xn−1
1 (ξ̃))∫ β

0
dξ̃

M(xn−1
1 (ξ̃))

, (6)

and

xn
2 (ξ) = xn

1 (α) + (1− xn
1 (α))

∫ ξ

α
dξ̃

M(xn−1
2 (ξ̃))∫ 1

α
dξ̃

M(xn−1
2 (ξ̃))

. (7)

Convergence of the linearized alternating Schwarz iteration (5) follows by
proving convergence at the interior interfaces and showing we have converged
to the correct limit.

Theorem 2. Under the assumptions of Theorem 1 the linearized alternating
Schwarz iteration (5) converges for any smooth initial guesses x0

1(ξ) and x0
2(ξ).

Proof. Evaluating the subdomain solutions (6–7) at the interfaces, we obtain
for the interface values the iterations

xn
1 (α) = Cn

αxn−1
1 (α) +Dn

α and xn
2 (β) = Cn

β xn−1
2 (β) +Dn

β ,

where



Schwarz Algorithms for Mesh Generation 5

Cn
α =

∫ 1

β
dξ̃

M(xn−2
2 (ξ̃))∫ 1

α
dξ̃

M(xn−2
2 (ξ̃))

∫ α

0
dξ̃

M(xn−1
1 (ξ̃))∫ β

0
dξ̃

M(xn−1
1 (ξ̃))

, Dn
α =

∫ β

α
dξ̃

M(xn−2
2 (ξ̃))∫ 1

α
dξ̃

M(xn−2
2 (ξ̃))

∫ α

0
dξ̃

M(xn−1
1 (ξ̃))∫ β

0
dξ̃

M(xn−1
1 (ξ̃))

,

and

Cn
β =

∫ 1

β
dξ̃

M(xn−1
2 (ξ̃))∫ 1

α
dξ̃

M(xn−1
2 (ξ̃))

∫ α

0
dξ̃

M(xn−1
1 (ξ̃))∫ β

0
dξ̃

M(xn−1
1 (ξ̃))

, Dn
β =

∫ β

α
dξ̃

M(xn−1
2 (ξ̃))∫ 1

α
dξ̃

M(xn−1
2 (ξ̃))

.

The quantities Cn
α,Dn

α, Cn
β and Dn

β satisfy

0 < Cn
α, Cn

β ≤ ρ < 1, 0 < Dn
α ≤ Dα < 1, and 0 < Dn

β ≤ Dβ < 1,

where

ρ :=
1

1 + a
A

β−α
1−β

1

1 + a
A

β−α
α

, Dα :=
1

1 + a
A

β−α
α

1

1 + a
A

1−β
β−α

, and Dβ :=
1

1 + a
A

1−β
β−α

.

To establish these bounds let F (x) := 1/M(x). The assumptions on M imply
1
A ≤ F (x) ≤ 1

a . As an example, the upper and lower bounds on F then imply∫ α

0
F (x(ξ)) dξ∫ β

0
F (x(ξ)) dξ

≤ 1
1 + a

A
β−α

α

and

∫ 1

β
F (x(ξ)) dξ∫ 1

α
F (x(ξ)) dξ

≤ 1
1 + a

A
β−α
1−β

.

Consider now the iteration for xn
1 (α) only. Using the recursion, we have

xn
1 (α) =

n∏
k=1

Ck
αx0

1(α) +
n∑

k=1

Dk
α

(
n∏

l=k+1

Cl
α

)
,

where the product in the k–th term of the sum is assumed to be one if the
lower index of the product exceeds the upper index. Since ρ < 1, the product
multiplying x0

1(α) must go to zero as n →∞. The infinite series converges by
direct comparison with

∑∞
k=1 Dαρk−1. A corresponding argument applies to

show convergence of xn
2 (β).

Denote the limits of {xn
1 (α)} and {xn

2 (β)} as x̃α and x̃β respectively. Since
the interface values converge to x̃α and x̃β , the subdomain solutions defined
by (5) converge to functions x̃1 and x̃2 both satisfying the nonlinear PDE.
Since x̃1(α) = x̃2(α) and x̃1(β) = x̃2(β), both x̃1 and x̃2 satisfy the same PDE
in the overlap with the same two boundary conditions, and by assumption of
uniqueness, x̃1 and x̃2 must coincide in the overlap. One can therefore simply
glue these two solutions together in order obtain a function which satisfies the
PDE everywhere, and also the two original boundary conditions at 0 and 1.
Again by uniqueness, this must now be the desired solution. ut

4 Numerical Results

In this section we demonstrate the results above using a simple finite difference
discretization of the BVP (1) and iterations (2,5). We also include results from
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the parallel nonlinear Schwarz algorithm from [8] and a linearized parallel
Schwarz algorithm for comparison. Details of the numerical approach and
convergence of the discrete DD algorithm will be considered elsewhere.

We solve EP for u(x) = (1 − eλx)/(1 − eλ) on the interval x ∈ [0, 1]. For
large values of λ this function exhibits a boundary layer at x = 1. We use the
arc–length monitor function M(x, u(x)) =

√
1 + u2

x. and choose λ = 20. The
error reported is the difference between the single domain numerical solution
and the domain decomposition solution over the first subdomain.
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Fig. 1. Error versus # DD iterations.
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Fig. 2. Error versus # of linear solves.

In Figure 1 we solve (1) on two subdomains with a 5% overlap using
linearized and nonlinear, parallel and alternating Schwarz iterations. We see
that the convergence of the alternating iteration is faster than the parallel
algorithms for both the nonlinear and linearized version of the algorithms.
In terms of number of iterations the nonlinear algorithms outperform the lin-
earized variants. It is important, however, to keep in mind that each nonlinear
DD iteration is more expensive than its linearized counterpart. In Figure 2 we
repeat the convergence history as a function of a work unit which we take to
be the cost of a linear solve. Each iteration of a linearized Schwarz algorithm
requires one linear solve while each iteration of a nonlinear Schwarz algorithm
requires many linear solves – one for each Newton step. Each linear solve
required by both algorithms has roughly the same cost due to the structure
of the Jacobian matrix. As a function of the work effort the efficacy of the
linearized Schwarz algorithms is obvious for this example.

In Table 1 we demonstrate the quality of the grids by calculating the ‖·‖∞
error between u(x) (above) and the piecewise linear interpolant for u(x) on the
grid computed by the nonlinear and linearized alternating Schwarz algorithms
as a function of the number of iterations. The results show that the nonlinear
Schwarz method is quickly able to find an appropriate grid function after a
few DD iterations. The linearized Schwarz algorithm, as expected, requires
more DD iterations but is able to find a quality grid efficiently due to smaller
relative cost per iteration.
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Iterations 1 3 5 7 9 11 ∞
Nonlinear 0.3625 0.0520 0.0498 0.0478 0.0462 0.0448 0.0366

Linear 0.3625 0.1291 0.1006 0.0571 0.0479 0.0471 0.0366

Table 1. Interpolation errors for the grids obtained by Schwarz iterations.
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Fig. 3. Linearized Schwarz: Error for
varying C.
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Fig. 4. Non-linear versus linearized
Schwarz with varying C.

The quantities ρ,Dα and Dβ corresponding to iteration (5) indicate a
dependence on the shape of M for the linearized alternating Schwarz iteration.
To test this effect, we consider the performance of (5) for M(x) = C(x−0.5)2+
1. The parameter C controls the ratio a/A. As C → ∞, a/A → 0, and the
contraction rate could diminish. This is demonstrated In Figure 3. Figure 4
illustrates the effect of changing the value of C on both the nonlinear and
linearized Schwarz algorithms. We see that the linearized Schwarz algorithm
is affected more by an increase in C. Indeed as the problem becomes more
difficult the nonlinear Schwarz algorithm becomes more efficient.

In summary, we have proposed, analyzed and provided brief numerical
comparisons for two alternating Schwarz algorithms to solve the steady grid
generation problem using the EP. Ongoing work includes the analysis of DD
approaches to moving mesh PDEs for the time dependent mesh generation
problem.
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