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1 Introduction

Overlapping Schwarz waveform relaxation (SWR) provides space–time parallelism
by iteratively solving parabolic partial differential equations (PDEs) over a time
window on overlapping spatial subdomains. SWR has been studied for many prob-
lems at the continuous and discrete levels. Gander and Stuart [4] and Giladi and
Keller [5] have analyzed SWR for the for the heat equation on a finite spatial do-
main in the continuous and semi-discrete (in time) cases. Semi-discrete (in space)
analysis for reaction diffusion equations on an infinite spatial domain can be found
in [8]. Closely related work on applications of WR methods to RC type circuits can
be found in [3, 2, 1] (continuous in time analysis), [9] (infinite circuit, discrete in
time), [6, 7] (fractional order, infinite circuit, discrete and continuous resp. in time),
and [10] (Volterra integro-PDEs, infinite spatial domain). We provide an analysis of
a full space–time discretization of SWR for the heat equation on two overlapping,
bounded subdomains, which does not appear to be in the literature.

Consider the one dimensional heat equation ut = uxx + f (x, t) for −L < x < L
and 0 < t ≤ T subject to initial and boundary conditions u(x,0) = u0(x),u(−L, t) =
h1(t), and u(L, t) = h2(t). Discretizing in space with central finite differences on
Ω h = {xm : xm+1 = xm +∆x,m =−N, ...,N}, where ∆x = L

2N and x−N =−L, leads
to the IVP

du(t)
dt

= Au(t)+ f(t), 0 < t ≤ T, u(0) = u0, (1)

where u(t) is the solution vector on the interior of Ωh with components um(t),m =
−(N−1), . . . ,(N−1), which are the semi-discrete approximations of u(x, t) at x =
xm. Here A = 1

∆x2 tridiag{−1,2,1} ∈ R(2N−1)×(2N−1),
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f(t) = ( f (x−(N−1), t)+
1

∆x2 h1(t), f (x−(N−2), t), . . . , f (x(N−2), t), f (x(N−1), t)+
1

∆x2 h2(t))T

and
u0 = (u0(x−(N−1)), . . . ,u0(x(N−1)))

T .

2 Semi–discretized SWR

To obtain the classical SWR solution of (1), we decompose Ω h into two overlapping
subdomains: Ω h

1 = {x−N ,x−(N−1), . . . ,xM} and Ω h
2 = {x−M,x−(M−1), . . . ,xN} where

the quantity M ≥ 1 is an integer that determines the overlap size. If w is any vector
in R2N−1, then let w̄1 ∈ RN+M−1 be the first N +M− 1 components of w and let
w̄2 ∈ RN+M−1 be the last N +M−1 components of w.

The classical semi-discrete SWR algorithm on the two subdomains, Ω h
1 and Ω h

2 ,
can be written as : for k = 1,2, . . .

duk
1(t)
dt

= A1uk
1(t)+ fk

1(t), 0 < t ≤ T,

duk
2(t)
dt

= A2uk
2(t)+ fk

2(t), 0 < t ≤ T,

(2a)

where
uk

1(t) = (uk
1,−(N−1)(t),u

k
1,−(N−2)(t), ...,u

k
1,(M−1)(t))

T , (2b)

and
uk

2(t) = (uk
2,(−M+1)(t),u

k
2,(−M+2)(t), ...,u

k
2,(N−1)(t))

T , (2c)

are the subdomain iterates on the interior nodes of Ω h
1 and Ω h

2 . Here, for j = 1,2,
A j =

1
∆x2 tridiag{−1,2,−1} ∈ RN+M−1,N+M−1. The vectors fk

j ∈ RN+M−1, for j =
1,2, are defined by

fk
1(t) = f̄1(t)+

1
∆x2 uk

1,M(t)δ1 and fk
2(t) = f̄2(t)+

1
∆x2 uk

2,−M(t)δ2, (2d)

where δ j ∈ RN+M−1 for j = 1,2, are the unit column vectors

δ1 = (0, . . . ,0,1)T and δ2 = (1,0, . . . ,0)T . (2e)

The system (2a) is supplemented with an initial condition

uk
j(0) = ū j(0), j = 1,2, (2f)

and boundary and transmission conditions

uk
1,−N(t) = h1(t), uk

1,M(t) = uk−1
2,M (t), 0 < t ≤ T,

uk
2,−M(t) = uk−1

1,−M(t), uk
2,N(t) = h2(t), 0 < t ≤ T.

(2g)
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Here uk
j,m(t) represents the numerical approximation of u(x, t) at x = xm over Ω j

using the SWR algorithm at the kth iteration. To get the iteration started we must
pick initial guesses for u0

2,M(t) and u0
1,−M(t).

3 Convergence Analysis

To analyze the fully discrete SWR we begin with a lemma which desribes the single
domain discrete solution of (1) using a backward Euler integrator.

Lemma 1. The single domain solution at t = tn, u(n), restricted to the interior of
Ω h

j , ū j(n), for j = 1,2, using a backward Euler integrator for the semi–discrete heat
equation (1), is the unique solution of the subsystems

(I1−∆ tA1)ū1(n)−µuM(n)δ1 = ū1(n−1)+∆ t f̄1(n) (3)
(I2−∆ tA2)ū2(n)−µu−M(n)δ2 = ū2(n−1)+∆ t f̄2(n), (4)

for n = 1,2, . . .. Here µ = ∆ t/∆x2, δj, for j = 1,2, are defined in (2e), uM(n) and
u−M(n) are the single domain solutions at the interior interface nodes at time tn,
and I1,2 are (N +M− 1)× (N +M− 1) identity matrices. Here f̄j(n) ≡ f̄j(tn) for
j = 1,2.

Similar expressions for the SWR approximations are given in the next lemma.

Lemma 2. The solution of (2a)–(2g) using a backward Euler integrator at t = tn,
uk

j(n), for j = 1,2, at the kth iteration, are the unique solutions of the subsystems

(I1−∆ tA1)uk
1(n) = uk

1(n−1)+∆ tfk
1(n), (5)

(I2−∆ tA2)uk
2(n) = uk

2(n−1)+∆ tfk
2(n), (6)

for n = 1,2, . . .. Here fk
j(n)≡ fk

j(tn), for j = 1,2, where fk
j (t) are defined in (2d).

We denote the error between the single domain and SWR solutions at time step n
by ek

j(n) = uk
j(n)− ū j(n) for j = 1,2. Simply subtracting the representations of the

single domain and SWR solutions from the previous two lemmas gives the following
result.

Lemma 3. For j = 1,2, k = 1,2, . . . and n = 1,2, . . . the errors ek
j(n) satisfy

(I1−∆ tA1)ek
1(n) = ek

1(n−1)+µek
1,M(n)δ1, (7)

(I2−∆ tA2)ek
2(n) = ek

2(n−1)+µek
2,−M(n)δ2, (8)

with initial condition
ek

j(0) = 0̄ j, for j = 1,2, (9)

and boundary conditions
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ek
1,M(n) = ek−1

2,M (n), ek
1,−N(n) = 0,

ek
2,−M(n) = ek−1

1,−M(n), ek
2,N(n) = 0.

(10)

Here 0̄j ∈ RN+M−1, for j = 1,2 is the zero vector.

Using the boundary values and the definition of A1,2 and δ1,2 we obtain the fol-
lowing lemma.

Lemma 4. Component-wise, for j = 1,2, k = 1,2, . . . and n = 1,2, . . . the errors
ek

j,m(n) satisfy

−µek
1,m−1(n)+(1+2µ)ek

1,m(n)−µek
1,m+1(n) = ek

1,m(n−1), for m =−(N−1), . . . ,M−1,

−µek
2,m−1(n)+(1+2µ)ek

2,m(n)−µek
2,m+1(n) = ek

2,m(n−1), for m =−(M−1), . . . ,N−1.

To analyze these recursions for the error we need the discrete Laplace transform.
The discrete Laplace transform for a general vector υ = (υ(0),υ(1), . . .)T , defined
on a regular grids with time step ∆ t is

υ̂(s) =
∆ t√
2π

∞

∑
n=0

z−n
υ(n), (11)

where z = es∆ t , s = σ + iω , σ > 0 and −π/T ≤ ω ≤ π/∆ t.
The recursions for the discrete Laplace transforms are recorded in the next

lemma.

Lemma 5. For j = 1,2, k = 1,2, . . . and n = 1,2, . . . the discrete Laplace transform
of errors êk

j,m(n) satisfy

µ êk
1,m−1(s)− (2µ +η)êk

1,m(s)+µ êk
1,m+1(s) = 0, m =−(N−1), . . . ,(M−1)

(12)
and

µ êk
2,m−1(s)− (2µ +η)êk

2,m(s)+µ êk
2,m+1(s) = 0, m =−(M−1), . . . ,(N−1).

(13)
The Laplace transform of the initial error gives

êk
j(0) = 0 j, for j = 1,2 (14)

and the Laplace transforms of the boundary conditions are

êk
1,M(s) = êk−1

2,M (s), êk
1,−N(s) = 0,

êk
2,−M(s) = êk−1

1,−M(s), êk
2,N(s) = 0,

(15)

where µ = ∆ t
∆x2 , η = z−1

z and z = es∆ t .

The general solution of these recursion relations is given in the next two lemmas.
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Lemma 6. The general solution of the recursions for the Laplace transforms of the
error is given by

êk
j,m(s) = ak

jλ
m
+ +bk

jλ
−m
+ , for j = 1,2, (16)

where λ+ solves µ − (2µ + η)λ + µλ 2 = 0 and is given explicitly by λ+ =
(2µ+η)+

√
(2µ+η)2−4µ2

2µ
, µ = ∆ t

∆x2 , η = z−1
z and z = es∆ t where the coefficients

(ak
j,b

k
j)

T =: ck
j are shown to satisfy a simple fixed point iteration in the next lemma.

Note: in the expression above for λ+ we have chosen the square root with positive
real part.

Lemma 7. The coefficients in the general solution for the Laplace transform of the
error, ck

j = (ak
j,b

k
j)

T , for j = 1,2, satisfy(
ck

1
ck

2

)
= Γ

(
ck−2

1
ck−2

2

)
, (17)

where the contraction matrix, Γ , is the block diagonal matrix

Γ =

(
S1

S2

)
, (18)

where
S1 = Λ

−1
1 Θ1Λ

−1
2 Θ2 and S2 = Λ

−1
2 Θ2Λ

−1
1 Θ1, (19)

and

Λ1 =

(
λ
−N
+ λ N

+

λ M
+ λ

−M
+

)
,Λ2 =

(
λ
−M
+ λ M

+

λ N
+ λ

−N
+

)
,Θ1 =

(
0 0

λ M
+ λ

−M
+

)
,Θ2 =

(
λ
−M
+ λ M

+

0 0

)
.

(20)

To ultimately show convergence of the discrete SWR algorithm we show that for
j = 1,2, ck

j tends to zero as k tends to infinity. A straightforward, but slightly tedious
calculation, gives the following explicit representation of ρ(Γ ).

Lemma 8. The spectral radius of the contraction matrix Γ above, ρ(Γ ), is

ρ (Γ ) =

∣∣∣∣∣λ
(N−M)
+ −λ

−(N−M)
+

λ
(N+M)
+ −λ

−(N+M)
+

∣∣∣∣∣
2

, (21)

where λ+ =
(2µ+η)+

√
(2µ+η)2−4µ2

2µ
, µ = ∆ t

∆x2 , η = z−1
z and z = es∆ t .

From the form of the contraction factor in the previous lemma it is not clear that
the algorithm converges. To see this we first rewrite the contraction factor.

Lemma 9. Using the mapping, λ+ = ev, the spectral radius of the contraction ma-
trix, ρ(Γ ), can be written as
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ρ(Γ ) =

∣∣∣∣ sinh((N−M)v)
sinh((N +M)v)

∣∣∣∣2 . (22)

Using v = ζ + iϕ , we may write ρ(Γ ) as

ρ (ζ ,ϕ) =
2p(ζ ,ϕ)− sin(2Nϕ)sin(2Mϕ)− sinh(2Nζ )sinh(2Mζ )

2p(ζ ,ϕ)+ sin(2Nϕ)sin(2Mϕ)+ sinh(2Nζ )sinh(2Mζ )
, (23)

where
p(ζ ,ϕ) = sinh2(Nζ )cosh2(Mζ )+ sinh2(Mζ )cosh2(Nζ )

+ sin2(Nϕ)cos2(Mϕ)+ sin2(Mϕ)cos2(Nϕ).
(24)

Proof. Using the substitution λ+ = ev and the definition of the hyperbolic sine func-
tion we arrive at (22). Now using v = ζ + iϕ and hyperbolic trignometric identities,
the contraction rate (22) can be written as

ρ (ζ ,ϕ) =

∣∣∣∣ sinh((N−M)ζ )cos((N−M)ϕ)+ icosh((N−M)ζ )sin((N−M)ϕ)

sinh((N +M)ζ )cos((N +M)ϕ)+ icosh((N +M)ζ )sin((N +M)ϕ)

∣∣∣∣2 .
(25)

Simplifying the modulus in (25) gives

ρ (ζ ,ϕ) =
sinh2((N−M)ζ )cos2((N−M)ϕ)+ cosh2((N−M)ζ )sin2((N−M)ϕ)

sinh2((N +M)ζ )cos2((N +M)ϕ)+ cosh2((N +M)ζ )sin2((N +M)ϕ)
.

(26)
Again using hyperbolic trigonometric identities we arrive at (23) where p is as de-
fined in (24).

To show the spectral radius is strictly less one a more detailed analysis of λ+

from Lemma 8 is necessary.

Lemma 10. The quantity η = (z−1)/z in the expression for λ+ satisfies Re(η)> 0
and hence Re(λ+)> 1.

Proof. From Lemma 8, η = (z−1)/z where z = es∆ t , s = σ + iω , σ > 0 and π/T ≤
|ω| ≤ π/∆ t. The real part of η is given by

Re(η) = 1− e−σ∆ t cos(ω∆ t)

which is easily seen to be positive for σ > 0 and π/T ≤ |ω| ≤ π/∆ t. The real part
of λ+ is given by

Re(λ+) = 1+
Re(η)

2µ
+

Re(
√

η2 +4µη)

2µ
.

The conclusion Re(λ+)> 1 then follows from the fact that Re(η)> 0 and the choice
of the square root in λ+.

The following inequality will finally lead us to the main result.
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Lemma 11. If λ+ = eζ+iϕ then the following inequality

sinh(Kζ )> |sin(Kϕ)| , (27)

holds where the quantity K ≥ 1 is an integer.

Proof. Recall that λ+ satisfies µ−(2µ+η)λ++µλ 2
+ = 0. Substituting λ+ = eζ+iϕ ,

multiplying by e−(ζ+iϕ) and dividing by 2µ , we find

eζ+iϕ + e−(ζ+iϕ)

2
= 1+

η

2µ
.

Using the definition of the hyperbolic cosine function and splitting the real and the
imaginary parts of η we have

cosh(ζ + iϕ) =
(

1+
Re(η)

2µ

)
+ i

Im(η)

2µ
. (28)

Since Re(η)> 0 then clearly |cosh(ζ + iϕ)|2 > 1.
Induction is used to prove (27). Using Euler’s formula, hyperbolic trignometric

identities and simplifying the square of the modulus, |cosh(ζ + iϕ)|2 > 1 becomes

cosh2(ζ )cos2(ϕ)+ sinh2(ζ )sin2(ϕ)> 1,

which simplifies to sinh2(ζ )> sin2(ϕ). Since we know Re(λ+)> 1 and Re(λ+) =
eζ cos(ϕ) > 1, then ζ > 0 and hence sinh(ζ ) > 0. Taking the square root of both
sides of the inequality sinh2(ζ )> sin2(ϕ) then gives the base case in the induction
argument.

The induction step then follows using the base inequality, hyperbolic trig iden-
tities, properties of the hyperbolic trignometric and trignometric functions and the
triangle inequality.

We now arrive at the final and main result.

Theorem 1. The fully discrete SWR algorithm which results from applying the back-
ward Euler time integrator to (2a)–(2g) converges to the single domain discrete
solution on the interior of Ω j, for j = 1,2.

Proof. We are now in a position to prove that ρ(Γ ) < 1. The spectral radius of the
contraction matrix, ρ(Γ ), is given in (23) where p is given in (24). Since p > 0, then
clearly ρ (ζ ,ϕ)< 1 if

sin(2Nϕ)sin(2Mϕ)+ sinh(2Nζ )sinh(2Mζ )> 0.

The above inequality follows from Lemma 11 for K = 2N and K = 2M. To see this,
we consider different cases for the sign of sin(2Nϕ) and sin(2Mϕ). Since ζ > 0
we have sinh(2Nζ ) > 0 and sinh(2Mζ ) > 0. There are two cases to consider: if
sin(2Nϕ) and sin(2Mϕ) have the same or opposite signs. If they have the same sign
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then the inequality above is obvious. If they have opposite signs then Lemma 11
gives the result.

4 Conclusions

In this paper we have obtained an explicit contraction rate for the discrete Laplace
transform of the error for the fully discretized SWR algorithm applied to the heat
equation on two overlapping bounded domains. Further analysis, with other families
of time integrators and an arbitrary number of subdomains will appear elsewhere.
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