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Abstract: The tidal power available for electricity generation from in-stream turbines placed in
the Minas Passage of the Bay of Fundy is examined. A previously derived theory is adapted to
model the effect of turbine drag on the flow through the Minas Passage and the tidal amplitude
in the Minas Basin. The theoretical maximum power production over a tidal cycle is determined
by the product of the amplitude of the forcing tide in the Bay of Fundy and the undisturbed
volumetric flowrate through the Minas Passage. Although the extraction of the maximum power
will reduce the flowrate through the Minas Passage and the tides in the Minas Basin by over 30
per cent, a significant portion of the maximum power can be extracted with little change in tidal
amplitude as the initial power generation causes only an increase in the phase lag of the basin
tides. Two-dimensional, finite-element, numerical simulations of the Bay of Fundy–Gulf of Maine
system agree remarkably well with the theory. The simulations suggest that a maximum of 7 GW of
power can be extracted by turbines.They also show that any power extraction in the Minas Passage
pushes the Bay of Fundy–Gulf of Maine system closer to resonance with the forcing tides, resulting
in increased tidal amplitudes throughout the Gulf of Maine. Although extracting the maximum
power produces significant changes, 2.5 GW of power can be extracted with a maximum 5 per
cent change in the tidal amplitude at any location. Finally, the simulations suggest that a single
turbine fence across the Minas Passage can extract the same power as turbines throughout the
passage but that partial turbine fences are less efficient.
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1 INTRODUCTION

The Bay of Fundy harbours some of the world’s high-
est tides, reaching over 6 m in amplitude in the Minas
Basin (Figs 1 and 2). It has been shown [1, 2] that
the natural period of the Bay of Fundy–Gulf of Maine
system is slightly larger than the 12.42 h period of
the dominant semi-diurnal lunar tide – the M2 tide.
The resulting near-resonance is responsible for driving
the high tides. The tides are a large source of energy;
Greenberg [2] estimates a mean potential energy of
1.15 × 1014 J for the Minas Basin. For a tidal barrage,
the potential power associated with this energy, esti-
mated as twice the mean potential energy released
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over half a tidal period, is over 10 GW, about 15 per
cent of Canada’s current annual electrical power con-
sumption [3]. This has encouraged the discussion of
tidal power in the region for nearly 100 years.

Until recently, methods of harvesting tidal energy
concentrated on capturing water in a dam or bar-
rage at high tide and generating electricity by releasing
the water at low tide. Although such constructions
will obviously have a large impact on the local envi-
ronment [4], previous research suggests that adding
a barrier near the Minas Passage would also cause
large changes throughout the entire Bay of Fundy–
Gulf of Maine system as the system is pushed closer
to resonance. As such, adding a barrier increases the
amplitude of tides by 20 to 30 per cent along the coast
of Maine and Massachusetts [2, 5].

With the development of new in-stream tidal tur-
bines, the prospect of tidal power in the Bay of Fundy
is being revisited. As discussed in a variety of articles
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Fig. 1 The Bay of Fundy and Gulf of Maine region. The
solid and dashed contours are the amplitude
(m) and phase (◦), respectively, of the simu-
lated M2 tide. The rectangle indicates the Minas
Basin region shown in Fig. 2. The grey line is
the open-ocean boundary of the computational
domain

Fig. 2 The Minas Passage and the Minas Basin regions.
The solid and dashed contours are the amplitude
(m) and phase (◦), respectively, of the simulated
M2 tide. The notation is that used in the model of
the tides in section 2

[3, 4, 6–9], tidal turbines, which act much like wind tur-
bines, are thought to offer many advantages over other
forms of power generation. The high density of water
and the predictability of the tides suggest that tidal
turbines should be able to produce a large amount of
reliable power, while the flexibility of individual tur-
bines should make turbines more economically and
ecologically attractive than tidal barrages. However,
these advantages have yet to be established in prac-
tice as most operating turbine projects are small in
scale [4, 9].

Harnessing in-stream tidal power requires placing
turbines in regions of high tidal flow. The strongest
flow in the Bay of Fundy region occurs through the
Minas Passage, the relatively deep, thin channel that
connects the Minas Basin to the Bay of Fundy (Figs 1
and 2). The volumetric flowrate through the passage
reaches roughly 106 m3/s and sustains time-averaged,
depth-averaged tidal currents of up to 3.28 m/s [3].
Recent surveys of potential tidal power sites have esti-
mated the theoretical mean power of a flow through a
channel, using a formula based on the kinetic energy
flux in the undisturbed state [3, 7]

PKE = E
(

1
2
ρû3

)
(1)

where ρ is the density of water, E the cross-sectional
area of the channel and u the depth-averaged,
upstream current speed. The term in brackets in
equation (1) is the mean power density and is cal-
culated by averaging u across the channel and over
a tidal cycle. In reference [3], a mean power density
of 6.036 kW/m2 and a passage cross-sectional area
of 2.74 × 105 m2 were used to give a power estimate
of 1.9 GW for the Minas Passage, significantly less
than the 10 GW estimate based on the mean potential
energy.

Several aspects of this kinetic energy flux estimate
require comment. First, an important aspect of the
estimate is that the speed is cubed, so the power esti-
mate increases rapidly with small increases in flow
speed. Thus, formula (1) suggests that the best region
for power is the narrowest portion of a channel with
the highest flow speed. Second, the estimate contains
no information about what forces the flow. This is
extremely important for tidal flows. Extracting power
and thus slowing the flow through the channel can
increase the tidal head, the difference in tidal elevation
across the channel. Thus, extracting power actually
increases the forcing that drives the flow. Formulas
that do not take this into account may underestimate
the potential power.

Recently, Garrett and Cummins [10, 11] have exam-
ined the potential of in-stream power generation from
tidal flow in a channel. They reached two important
conclusions: first, ‘the average power produced need
not be much less than in a conventional scheme with
a dam’, and second, ‘there is no simple relationship …
between the maximum average power and the average
kinetic energy flux in the undisturbed state’ [10]. Gar-
rett and Cummins [10] derived an alternative formula
for the maximum mean power that could be extracted
for a channel between two large basins, given by

Pavg = γρgaQ0 (2)
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where a is the amplitude of the tidal head across the
channel, g the acceleration due to gravity, and Q0 the
maximum volumetric flowrate through the channel in
the undisturbed state; γ is determined by the phase
lag of the current behind the maximum elevation [4]
and only varies over the small range between 0.20 and
0.24. In contrast to equation (1), this formula includes
the tidal forcing through a and depends linearly on
the current speed through the flowrate, Q0. As well
as the power depends on the volumetric flowrate, the
formula does not differentiate between thin channels
with strong flow and wide channels with weaker flow.
It was shown in reference [4] that formula (2) agreed
well with numerical simulations of tidal flow through
channels east of Vancouver Island.

In considering the generation of power in the Minas
Passage, it is important to examine the resulting reduc-
tion in flowrate through the passage. Any change in
the flowrate will have a direct impact on the tides
in the Minas Basin and, as discussed above, indirect
effects throughout the Bay of Fundy and Gulf of Maine.
Estimates of the reduction in flowrate vary. Bryden
et al. [8, 12] suggest that extracting 10–25 per cent of
the kinetic energy flux in a channel flow would result
in a 3–7 per cent change in the flowrate. In contrast,
in the simulations of reference [4], the flowrate was
reduced by 42 per cent when the maximum power was
extracted, but by only 10 per cent when 44 per cent of
the maximum power was extracted. These results were
in agreement with the theory of Garrett and Cummins
[10]. The different estimates of the available power and
the resulting reduction in the flow lead to a large range
of estimates for the realizable power available from
the Minas Passage and suggest that further research is
required.

This article addresses this need by assessing the
resource potential of the Minas Passage. In section 2,
algebraic formulas based on the theories of Garrett and
Cummins [10, 11] are used to estimate the power avail-
able and the resulting reduction in the basin tides as
function of the turbine drag. In section 3, it is shown
that the theory and, in particular, formula (2) are appli-
cable to the Minas Passage but only if the parameter
a is taken to be the amplitude of the forcing tides.
In section 4, the theory is compared with numerical
simulations of the Bay of Fundy–Gulf of Maine system
using the finite-volume coastal ocean model (FVCOM)
with turbines represented by increased bottom fric-
tion in the Minas Passage. After it is established that
the theoretical estimates are accurate, the simulations
are used to examine the effects that adding in-stream
turbines to the Minas Passage would have on the tides
throughout the Bay of Fundy and the Gulf of Maine.
This is followed by a brief examination of how the loca-
tion of turbines in the Minas Passage would affect the
power generated. And in section 5, further discussion
and conclusions are presented.

2 TIDAL STREAM MODEL

Recently, two theoretical models that calculated the
potential power generated from tidal flow in a chan-
nel were derived by Garrett and Cummins. In refer-
ence [10], they examined the flow through a channel
between two large bodies of water with a constant-
amplitude tidal head. In reference [11], they examined
a channel connecting a small basin to the open ocean.
The critical difference between these two is that in
reference [10] they assumed the tide in the basin
was influenced by the flowrate through the channel,
whereas in reference [11] they included the effects
of flow acceleration. In a follow-up work, Blanch-
field et al. [13] showed that the two models could be
combined to examine the channel–small basin sce-
nario and generalized formula (2) by defining a to
be the amplitude of the open-ocean forcing tides and
increasing the range of γ to 0.19–0.26.

Following reference [13], consider the dynamics of
a channel connecting a small basin to the open ocean.
Here, the Minas Passage connects the Minas Basin
to the Bay of Fundy, as shown in Fig. 2. The channel
has a variable cross-sectional area E(x) and length L,
whereas the basin has a surface area Ab. As discussed
in detail in reference [13], the dynamics of the flow
through the channel can be modelled by the equations

c
dQ
dt

+ λ|Q|Q = g (ζo − ζb) (3)

Q = Ab
dζb

dt
(4)

where Q is the volumetric flowrate through the chan-
nel, ζo and ζb the tidal elevations in the ocean and the
basin, respectively, λ the drag parameter, and

c =
∫ L

0

dx
E(x)

(5)

with x measured along the channel. The equations are
derived from the momentum balance and continu-
ity. Equation (3) states that the pressure force created
by the difference in tidal elevations is balanced by
the combination of the acceleration of flow through
the channel and the non-linear drag in the chan-
nel. Here, the non-linear drag represents not only the
drag associated with bottom friction and the addition
of turbines but also all other non-linearities in the
model, including non-linear advection and the non-
linearities involved with the changes in domain as the
tides rise and fall. Equation (4) is simply the conserva-
tion of volume: the change in volume of water in the
basin as the surface elevation changes must equal the
volume flowrate through the channel.

Blanchfield et al. [13] have solved the dynamical
system given by equations (3) and (4) for both linear
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and quadratic drag. For linear drag, the system can be
solved analytically. This solution has the advantage of
being easily used and interpreted but suffers because
linear drag is not as realistic a model for bottom drag
or turbine drag. For quadratic drag, the system must
be solved numerically, and a graphical description of
how the solutions depend on parameters is given in
reference [13]. However, as discussed in section 3,
the Minas Passage pushes the limits of this theory. As
such, the parameter values that describe the Minas
Passage are not included in the parameter range that
Blanchfield et al. examined in reference [13]. Here, an
approximate analytic solution for the quadratic drag
system (3) and (4) is presented. It has the advan-
tage of not requiring numerical solution while still
being an accurate model for the flow in the Minas
Passage in the undisturbed state and as turbines are
added. A complete discussion of this approximate
solution, including justification for the solution and
an examination of its accuracy, is given in Appendix 2.

As in reference [13], the tidal elevation outside the
channel in the open ocean is assumed to be a single
sinusoid given by

ζo = a cos(ωt) (6)

where a and ω are the known amplitude and frequency
of the dominant tidal constituent, respectively. An
approximate solution to equations (3) and (4) is given
by assuming the basin tides are a single sinusoidal
function given by

ζb = ab cos(ωt − φ) (7)

where ab and φ are the unknown amplitude and phase
lag of the basin tides, respectively. From equation (4),
it follows that

Q = −Abωab sin(ωt − φ) (8)

As shown in Appendix 2, it follows from equation (3)
that the amplitude ratio, R = ab/a, and phase lag
satisfy

R2 = 2β2

(β − 1)2 + √
(β − 1)4 + 4(λ∗)2

and

sin φ = λ∗

β2
R2 (9)

where

β = g
Abω2c

, λ∗ = 8
3π

ga
(cω)2

λ (10)

The non-dimensional parameter β is determined by
the geometry of the channel and basin and is inde-
pendent of the drag [13]. It is also the ratio of the

mean potential energy in the basin to the mean kinetic
energy in the channel. And, as noted in reference [13],
it is the ratio of the Helmholtz frequency of the basin
to the frequency of forcing tides, with β = 1 being a
special resonant case. In contrast, the parameter λ∗ in
equation (10) is the non-dimensional drag parameter
in reference [13] multiplied by the factor 8/(3π) that
arises in the derivation of the approximate solution
(Appendix 2).

Given the approximate solution to the model, it is
possible to examine the power generated by turbines.
The non-linear drag force can be separated into two
parts: that associated with the natural drag in the
undisturbed channel and that associated with tur-
bines added to the channel. As in reference [13], the
drag parameter is written as

λ = λ0 + λ1 (11)

where from now on the subscript 0 will be associated
with the undisturbed state and the subscript 1 with the
added turbines. The corresponding non-dimensional
drag parameters are defined by equation (10).

The undisturbed state has amplitude ratio R0 and
phase φ0 determined by equation (9) when λ∗ = λ∗

0.
Alternatively, these equations can be rearranged to
give

β = R0

R0 − cos φ0
, λ∗

0 = sin φ0

(R0 − cos φ0)2
(12)

so that the values of β and λ∗
0 can be determined from

the observed values of R0 and φ0 This is particularly
useful for determining λ∗

0 because there is no simple
formula for it if it includes all non-linearities. As well,
the undisturbed maximum flowrate, Q0, is given by

Q0 = R0aAbω (13)

Once the undisturbed state is determined, equation
(9) can be used to determine how the solution will
change as the turbine drag is changed.

The mean turbine power, Pavg, is given by

Pavg = ρλ1|Q|Q2 (14)

where the over-line represents the average over a tidal
cycle. In reference [13], it was shown that it was useful
to relate the mean turbine power to a reference power
given by

Pref = ρgaQ0 (15)

which is, essentially, the work done by the forcing tides
in driving the undisturbed flow through the chan-
nel. The non-dimensional mean turbine power is then
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given by

P∗
avg = Pavg

Pref
(16)

Using the solution above, it follows that

P∗
avg = λ∗

1

2R0β2
R3

= 21/2λ∗
1

R0

[
(β − 1)2 + √

(β − 1)4 + 4(λ∗
0 + λ∗

1)
2
]3/2

(17)

This is zero when λ∗
1 = 0, increases for small λ∗

1 but
eventually decreases to zero as λ∗

1 becomes large and
the flowrate tends to zero. Hence, there must be a max-
imum mean turbine power, hereafter simply called
the maximum power. Finding this maximum can be
reduced to solving the cubic

(λ∗
1m + λ∗

0)(λ
∗
1m − 2λ∗

0)
2 − (β − 1)4(2λ∗

1m − λ∗
0) = 0

(18)

for λ∗
1m, the drag parameter that gives the maxi-

mum power. Given λ∗
1m, equation (9) can be used to

determine the amplitude, Rm, and the phase, φm, at
maximum power. Then equation (17) can be used to
calculate the maximum power, (Pavg)max, and, as in
reference [13], the ratio of the maximum power to
reference power is given by

γ = (Pavg)max

Pref
= (P∗

avg)max

Before examining the solution, insight can be gained
by examining the extreme limits of the natural drag. In
the limit of weak natural drag, λ∗

0 = 0, which gives the
undisturbed state R0 = β/(1 − β) and φ0 = 0, it is easy
to show that

λ∗
1m = √

2(β − 1)2, Rm = 1√
2

R0, φm = 45◦,

γ = 1
4

(19)

A maximum power, i.e. one-fourth the reference
power, is achieved when the amplitude of the basin
tides and the flowrate have been reduced by a factor of√

2 and the phase lag has increased to 45◦.
In contrast, the strong natural drag limit, λ∗

0 �
(β − 1)2 where R0 ≈ β/

√
2λ∗

0 and φ0 ≈ 90◦, gives

λ∗
1m ≈ 2λ∗

0, Rm ≈ 1√
3

R0, φm ≈ 90◦,

γ ≈ 1
33/2

(20)

In this case, the maximum power is a smaller fraction
of Pref because some power is dissipated by the natural

drag and all the power is produced by a reduction in R,
as the phase lag does not increase beyond 90◦.

For all values of λ∗
0 and β, it follows that

1
33/2

� γ � 1
4

and
1√
3

� Rm

R0
� 1√

2
(21)

i.e. the maximum power is between 19 and 25 per cent
of the reference power, and at the maximum power,
the amplitude of the basin tide and channel flow is
reduced to between 58 and 71 per cent of the undis-
turbed state. Note that the bounds (21) are almost
identical to those found in reference [13] using the
full solution. For example, equation (21) corresponds
to 0.1925 < γ < 0.25, whereas Blanchfield et al. [13]
found that 0.19 < γ < 0.26.

It is important to recognize that despite the small
variation in γ , the maximum power always decreases
significantly with increasing λ∗

0 as Q0, and hence the
reference power, is reduced by increased drag. There-
fore, the power available is reduced by the natural drag
in the undisturbed system.

The complete characteristics of the maximum-
power solution versus λ∗

0 for three values of β are
shown in Fig. 3. The values of β are chosen to give a
range that includes the value for the Minas Passage
but is not examined in reference [13]. The ampli-
tude ratio of the undisturbed state, shown in plot
(a), decreases like 1/

√
λ∗

0 as the natural drag increases
but this decrease occurs at higher values of λ∗

0 as β

increases. The necessary turbine drag for maximum
power, shown in plot (b), increases almost linearly
with λ∗

0 and it increases significantly with increasing β.

Fig. 3 Values of the (a) undisturbed amplitude ratio, (b)
turbine drag, (c) amplitude ratio, and (d) turbine
power at maximum turbine power versus the nat-
ural drag, λ∗

0. In each graph, curves are plotted
for β = 3, 7, 10 as the dash-dot, solid, and dashed
lines, respectively
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The values for the amplitude and turbine power ratios
shown in plots (c) and (d) start at the λ∗

0 = 0 values
in equation (19) and monotonically decrease to the
large natural drag limit in equation (20), with the rate
of decrease being smaller for larger β. As noted above,
the values are restricted to the fairly strict bounds given
in equation (21), and so these values are not particu-
larly sensitive to the parameters β and λ∗

0. However,
plot (b) does show that the turbine drag necessary for
maximum power is sensitive to changes in β and λ∗

0.
A 30–40 per cent reduction in the Minas Basin

tides would have a significant environmental impact.
Therefore, it is reasonable to determine how much
power can be extracted for a given acceptable change
in tides. To do so, the power is rewritten as

P∗
avg = 1

2
(1 − 
ζb)

[√
1 − cos2 φ0(1 − 
ζb)2

− sin φ0(1 − 
ζb)
2
]

(22)

where


ζb = R0 − R
R0

(23)

is the relative change of the tidal amplitude in the
Minas Basin and, also, of the flowrate in the Minas
Passage. For small changes to the undisturbed system,

ζb ∼ 0, it follows that

P∗
avg ≈ R0

sin2 φ0 + 1
2 sin φ0


ζb (24)

Significantly, this linear approximation has a very large
slope for small φ0 when sin φ0 → 0, i.e. a large propor-
tion of the maximum turbine power can be obtained
for a very small change in the amplitude of the basin
tides if the phase lag in the undisturbed system is
small.

3 APPLICATION TO THE MINAS PASSAGE

Before the theory is used to predict the tidal power
available in the Minas Passage, the assumptions made
in the derivation of equations (3) and (4) as presented
in reference [13] need to be examined. The assump-
tion that the forcing tides can be represented as a
single sinusoidal function (6) is reasonable for the Bay
of Fundy, where the M2 tides dominate the tidal sig-
nal [14]. Therefore, in what follows, the frequency of
the forcing and basin tides is that of the M2 tides,
i.e. ω = 2π/12.42 per hour. However, it is also assumed
that the forcing and basin tides rise and fall uniformly.
As seen in Fig. 2, the tides in the Minas Basin vary in
amplitude by about 25 per cent and in phase by over
15◦, whereas the tides to the west of the Minas Pas-
sage vary by 10 per cent and 10◦. However, if ζo and

ζb represent appropriately averaged tides (see below),
this variation does not appear to limit the usefulness
of the theory. It is also assumed that the forcing tides
are unaffected by the addition of turbines. As shown
below, the tides in the Bay of Fundy to the west of the
Minas Passage do decrease significantly in amplitude
as turbines are added, and this does limit the accuracy
of the model when the turbine drag is large. As well, it
is assumed that E and Ab are constant in time and that
the flowrate, Q, does not change along the channel. In
fact, these vary 5–20 per cent due to the large tides,
with the largest change seen in the cross-sectional
area of the channel. However, the errors in making
these assumptions are proportional to the square of
the flowrate and so can reasonably be absorbed into
the non-linear drag term in equation (3).

Similarly, the non-linear advection term has been
absorbed into the non-linear drag term. It should
be stressed that the flow is highly non-linear, as
the velocities are on the order of several metres per
second, and in the local momentum balance, the non-
linear advection terms are very important. However,
when averaged and integrated along the channel, the
non-linear advection reduces in importance. In ref-
erences [10, 11, 13], it is argued that this term will
be dominated by flow separation as the flow exits
the channel and therefore can be represented as a
quadratic drag. The simulations discussed here do not
provide direct evidence that the non-linear advection
in the Minas Passage has the form of a non-linear
drag. Instead they show stronger non-linear advection
at the western entrance of the passage for both ebb
and flood tide. This suggests that the geometry of the
Minas Passage, most notably around Cape Split, plays
an important role in the dynamics. The simulations do
suggest that the channel-averaged non-linear advec-
tion is much weaker than the bottom-friction drag,
and so the assumption that the dominant non-linear
terms may be represented as a drag may be acceptable.
Similarly, the effects of Coriolis forces and horizon-
tal diffusion are also ignored as they are weak in all
simulations.

In order to examine how well equation (3) captures
the dynamics of the Minas Passage, each term in the
equation is calculated using the data from a numeri-
cal simulation of the undisturbed tides. In Fig. 4, the
results are plotted for one tidal period. For these cal-
culations the direction of x was chosen to be eastward
and the channel cross-sections are north–south cross-
sections of the Minas Passage (Fig. 2). These directions
were chosen for simplicity and consistency with the
turbine simulations. The forcing-tide elevation, ζo, is
calculated as the average tidal elevation along the
western entrance to the Minas Passage. The basin-tide
elevation, ζb, is calculated as the total water volume
variation of the Minas Basin divided by Ab. And, the
zonal flowrate, Q, is calculated at the eastern end of
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Fig. 4 The terms in the momentum balance (3) for the
Minas Passage over a tidal period. The accelera-
tion (solid line with circles) and non-linear drag
(dashed) play an equally important role in bal-
ancing the pressure force (thick solid line). The
imbalance between these three terms is shown
by the thin black line

the Minas Passage. These last two definitions are cho-
sen so that equation (4) must hold. The tidal head is the
difference of the tidal elevations multiplied by g . The
acceleration and non-linear drag are calculated using
the flowrate, and parameters c and λ chosen to give the
best least-squares fit to the tidal head. The imbalance
of these terms represents the portion of the response
to the tidal forcing that cannot be represented by the
sum of a linear acceleration term and a quadratic drag,
for example, the quadratic non-linearity of the form
Q2 that can be associated with non-linear advection.
As the imbalance is small, it follows that equation (3)
does capture the leading-order dynamics of the Minas
Passage (see Appendix 2 for further discussion).

There are several other aspects of Fig. 4 worth not-
ing. The pressure associated with the tidal head is
initially balanced by an acceleration of the flow in the
channel. As the flowrate increases, the drag becomes
more important and plays the leading role in bal-
ancing the forcing. The high drag then leads to a
de-acceleration of the flow even though the tidal head
remains large. Note that the flow, which has the same
phase as the drag term shown in Fig. 4, lags the tidal
head by about 2 h. It should also be noted that the
flow through the passage during flood and ebb tides
is not as symmetric as the figure suggests. During
the flood tide, the local velocities reach higher values,
resulting in greater frictional dissipation and higher
non-linear advection. Conversely, during ebb tide,
stronger meridional flow results in a stronger Coriolis
force. Finally, as turbines are added and the drag
increases, the balance (3) becomes more accurate,

with a leading-order balance between the pressure and
the non-linear drag while the acceleration and all other
terms decrease in importance.

The best-fit values of the parameters used to pro-
duce Fig. 4 are

cfit = 6.19 × 10−2 m−1 λfit = 1.89 × 10−11 m−4 (25)

These values of c and λ can be compared with the
values given by equation (5) and the formula for the
bottom-friction drag given by [13]

λ =
∫ L

0

κ0

h(x)E(x)2
dx (26)

where κ0 = 0.0026 is the bottom-drag coefficient used
in the numerical simulations and h(x) the cross-
channel average depth of the Minas Passage. These
formulas give c = 3.78 × 10−2 m−1 and λ = 6.00 ×
10−12 m−4. The differences are significant. In partic-
ular, the fact that λfit > 3λ indicates that quadratic
non-linearities other than bottom friction are very
important in the flow. This is not surprising given the
strong flow and high tides. The large value of cfit sug-
gests that a significant portion of the pressure force
across the Minas Passage acts on the non-uniform
sides of the channel and does not accelerate the zonal
flow. This is, in large part, a result of choosing x in
the zonal direction and not in a more appropriate
along-channel direction.

Parameter values for the Minas Basin and the Minas
Passage are listed in Table 1. The values for ab and a are
taken to be the averaged undisturbed tidal amplitude
in the Minas Basin and along the western entrance
to the Minas Passage, respectively. The cross-sectional
area corresponds to the average area of the Minas
Passage, and the area of the Minas Basin is the area
that is wet greater than 50 per cent of the time. Using

Table 1 Parameters and their values for the Minas Passage
and the Minas Basin

Parameter Description Calculated value

ρ Water density 1026 kg/m3

L Length of the Minas
Passage

1.2 × 104 m

E Cross-sectional area of
the Minas Passage

3.1 × 105 m2

Ab Surface area of the
Minas Basin

1.0 × 109 m2

ω M2 tidal frequency 1.4 × 10−4 s−1

ab Amplitude of basin
tides

5.30 m

a Amplitude of forcing
tides

4.71 m

h Average depth of the
Minas Passage

53 m
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these values, equations (13) and (15) give

Q0 = 7.5 × 105 m3/s Pref = 35 GW (27)

Assuming that the non-linear term is completely due
to bottom friction, equation (10) gives

β = 13.0 λ∗
0 = 9.84 (28)

In contrast, the values of β and λ∗
0 that correspond to

the best-fit values of c and λ0 given in equation (25) are

β = 7.91 λ∗
0 = 11.5 (29)

Alternatively, equation (12) can be used to determine
β and λ∗

0. The numerical simulations give

R0 = 1.12 and φ0 = 12.4◦ (30)

These are comparable with the observations in Table 3
given in Appendix 3, where the amplitude ratio and
phase lag between Diligent River to the west of
the Minas Passage and Five Islands to the east are
1.11 and 12◦, respectively. Using equation (12) with
equation (30) gives

β = 7.62 λ∗
0 = 9.89 (31)

The range of possible values for β and λ∗
0 reflects the

difficulty in precisely determining the best values for
these parameters. Fortunately, the theory suggests that
the turbine power is not particularly sensitive to the
choice of β and λ∗

0, as shown in Fig. 3. Hereafter, the
values given in equation (31) will be used as they are
the easiest to calculate, they give the undisturbed state
exactly, and they circumvent the issues of determining
other parameters or fitting the model precisely.

4 NUMERICAL SIMULATIONS

The Bay of Fundy–Gulf of Maine tides are simu-
lated using a two-dimensional, finite-volume model
(FVCOM) to verify the theoretical estimates and
examine far-field effects of extracting power. FVCOM
was developed by Changsheng Chen and Geof-
frey Cowles from the University of Massachusetts-
Dartmouth, along with Robert C. Beardsley from
Woods Hold Oceanographic Institution [15, 16]. The
model domain, shown in Fig. 1, extends far beyond
the Bay of Fundy–Gulf of Maine system so that it can
respond freely to the tidal forcing. The model was run
by specifying the M2 phase and amplitude at the open
boundary. The resulting tidal amplitude and phase
were then compared with observations. On average,
the accuracy was within 8 cm in amplitude and 3.1◦ in
phase, comparable with other studies [2, 5, 14]. Other

aspects of the model tides, such as energy, dissipation
rates, etc., were also compared with these studies to
ensure that all aspects of the model were realistic. The
details of the model and the comparison to observed
tides are given in Appendix 3.

In order to compare the above theory to the results of
simulations, it was necessary to model the effect that
turbines would have on the tides. As in reference [4],
the turbines were represented by increasing the bot-
tom friction over the entire Minas Passage (Fig. 2).
Such a scenario is a rough model of a turbine farm
or a series of turbine fences across the Minas Passage.
Following reference [4], the amount of power that was
extracted by the turbines is calculated as a fraction of
the total bottom-friction drag power, D, as follows

Pavg = κ1

κ1 + κ0
D (32)

where κ1 is the drag coefficient associated with the tur-
bines and κ0 the bottom-friction drag coefficient. The
value of λ1 is calculated using equation (26) with κ1.

A comparison of the results of the simulations and
the theory is shown in Fig. 5. In Fig. 5(a), the theoretical
amplitude ratio R is plotted versus λ∗

1. For the numer-
ical simulations, both the ratio of the tidal amplitude
in the basin to the constant amplitude scale a (o’s)
and the ratio of the basin tides to the changing ampli-
tude of the tides at the entrance to the Minas Passage
(x’s) are plotted. It is clear that the theory captures

Fig. 5 (a) The ratio of the amplitude of the basin tides
to the forcing tide, R, versus λ∗

1. (b) The phase
lag of the basin tides, φ, versus λ∗

1. (c) The
non-dimensional turbine power, P∗

avg, versus λ∗
1.

(d) The non-dimensional turbine power, P∗
avg,

versus the relative amplitude change in the basin,

ζb. In each graph, the quadratic theory with β

and λ∗
0 given by equation (31) (solid line) and the

numerical simulations (markers) are plotted
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the decrease in the basin tides as the turbine drag is
increased. However, as increasing the turbine drag also
decreases the tides at the entrance of the Minas Pas-
sage, the ratio of the amplitudes does not decrease
as quickly as R. This has important consequences for
power generation. As the ratio decreases below one,
it increases the tidal head, resulting in stronger flow
and greater power. Therefore, the fact that the ratio
decreases more slowly for the simulations will mean
that the power generation in the simulations will be
lower than that predicted by the theory for large λ∗

1.
In Fig. 5(b), the phase lag, φ, from the theory and

simulations is plotted. It is clear that the theory cap-
tures how the phase lag depends on λ∗

1. It is the initial
rapid increase in phase lag that maintains a strong tidal
head even when the forcing and basin tides have the
same amplitude.

In Fig. 5(c), the turbine power from the theory and
simulations is plotted. For small λ∗

1, the two agree
remarkably well. However, as λ∗

1 increases, the differ-
ence in the tide amplitude ratios shown in Fig. 5(a)
causes the power in the simulations to be lower
than the theory predicts. The power initially increases
rapidly to a maximum and then tails off slowly, as the
theory predicts. The maximum power in the simula-
tions of 0.194Pref occurs at λ∗

1 = 71.9 when the basin
tides have been reduced by 36 per cent and the phase
lag is 55◦, whereas the theory predicts Pm = 0.222Pref

at λ∗
1m = 76.1, where 
ζb = 0.36 and φm = 51◦. Again,

there is very good agreement although the maximum
power is only 87 per cent of what the theory sug-
gests. Using equation (27), the maximum power in the
simulations corresponds to 6.95 GW. The turbine drag
coefficient for maximum power is κ1 = 0.06, over 20
times the bottom-friction drag coefficient.

Finally, in Fig. 5(d), the turbine power versus the rel-
ative change in the Minas Basin tides, 
ζb, is plotted.
As one would expect from the previous graphs, the
theory and simulations agree almost exactly for small

ζb but differ at larger values as the simulation turbine
power is lower. The maximum power occurs when the
basin tides are reduced by 36 per cent, but power lev-
els of roughly 50 per cent the maximum power can be
reached with only a 7.5 per cent reduction in the basin
tides. As the simulations agree so well with theory for
small 
ζb, formula (24) is valid, giving

Pavg ≈ 4.8
ζbPref ≈ 77
ζb GW (33)

Remarkably, for low levels of power extraction,
0.77 GW of turbine power can be extracted for each
percentage reduction in the Minas Basin tides!

It is obvious that extracting power in the Minas Pas-
sage causes changes to the phase and amplitude of
the tides in the Minas Basin. However, the extrac-
tion of power also causes changes throughout the
Bay of Fundy and the Gulf of Maine. In Fig. 6, the

Fig. 6 The decrease in amplitude of the tides (cm) in
the upper Bay of Fundy as a result of extracting
the maximum amount of power from the Minas
Passage

decrease in tidal amplitude that occurs at maximum
power extraction for the upper Bay of Fundy is plotted.
As discussed above, the tides in the Minas Basin are
reduced significantly, by over 2 m for most of the
basin. The reduction in tides decreases rapidly west
of the Minas Basin: the tides are reduced by 1–2 m in
the Minas Passage and by 30–50 cm in the region to
the west of Minas Passage. Over the rest of the upper
Bay of Fundy, including the Chignecto Bay, the tidal
amplitudes are reduced by less than 20 cm.

Conversely, tidal amplitudes are increased through-
out the Gulf of Maine. In Fig. 7, the increase in tidal
amplitude that occurs at maximum power extraction
for the Gulf of Maine is plotted. The tides increase by
over 12 cm for most of the gulf, with larger values to
the west, reaching a maximum of nearly 25 cm in the

Fig. 7 The increase in amplitude of the tides (cm) in
the Gulf of Maine as a result of extracting the
maximum amount of power from the Minas
Passage
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Boston area. The tides also increase at the mouth of
the Bay of Fundy by about 8 cm.

These results should be contrasted to simulations
that place a barrier across the Minas Passage. A bar-
rier across the Minas Passage produces large increases
in the tides throughout the Bay of Fundy and the Gulf
of Maine, with increases in the upper Bay of Fundy of
about 30 cm and large increases in the Gulf of Maine
of about 45 cm. In the other works [2, 5], barriers and
dams have produced similar large increases in the
tides throughout the domain. Finally, Fig. 7 shows that
although the entire Gulf of Maine is affected by tur-
bines in the Minas Passage, tides in the regions outside
the Gulf, for example, along the South Shore of Nova
Scotia and in the deep ocean, show generally less than
a 1 cm change in amplitude.

The changes in the tidal amplitudes can be related
to the changes in the resonant period of the Bay
of Fundy–Gulf of Maine system as turbines change
the flow through the Minas Passage. The resonant
period of the system was calculated as the period of
the forcing tides that produced the maximum total
energy in the system. Using this measure, the undis-
turbed system had a resonant period of 12.85 h, above
the period of the M2 tides of 12.42 h. As the turbine
drag is increased, the resonant period of the system
decreases. For weak turbines, κ1 = 0.005, the resonant
period is reduced to 12.80 h. For values near maxi-
mum turbine power, κ1 = 0.05, the resonant period is
reduced to 12.59 h, significantly closer to the forcing
period, resulting in higher tides for most of the sys-
tem. In comparison, for a barrier at the Minas Passage,
the resonant period is 12.50 h, still closer to the res-
onant period and hence producing still greater tidal
amplitudes.

In order to further examine the effects of extracting
power, the relative change in amplitude versus the tur-
bine power, Pavg, for a number of locations is plotted in
Fig. 8. As noted before, extracting the maximum power
can result in large changes in the tides (>30 per cent)
in the Minas Passage and the Minas Basin and sig-
nificant far-field changes (∼15 per cent). The far-field
effects are still significantly smaller than those with
a full barrier. However, the figure also illustrates that
significant power can be extracted with limited effects
on the tidal regime throughout the domain. For exam-
ple, 4 GW of power can be extracted with less than a
10 per cent change in tidal amplitudes throughout the
domain, and 2.5 GW can be extracted with less than a
5 per cent change. It should be noted that any power
extraction will produce changes throughout the Bay
of Fundy and Gulf of Maine, but the largest changes
are always in the Minas Basin. Therefore, formula (33)
can be used as an upper bound of the changes in tides
throughout the system.

The theory suggests that the power extracted from a
region is a function of the tidal forcing and the channel

Fig. 8 The relative change in amplitude of the tides
(%) versus extracted turbine power (GW). The
markers to the right are the changes for the top
four curves when a barrier is placed across the
entrance to the Minas Passage. See Fig. 10 in
Appendix 3 for the location of the stations

flowrate, not simply the local flow. The previous simu-
lations had turbines throughout the Minas Passage. A
more realistic scenario would be a single turbine fence
across the passage. The theory suggests that the maxi-
mum power should be the same for such a thin fence.
To test this, a series of simulations were run where tur-
bines were only placed along one-fourth of the total
length of the Minas Passage.

The theory also assumes that all the channel flow
passes through the turbines, that is, the turbines are
a fence extending across the channel. In a more real-
istic scenario, turbines will not be placed in shallow
water and thus will not extend across the entire cross-
section of the channel. This situation is examined in
some detail in reference [17], where it was shown that
the potential power is reduced by a factor of between
one-third and two-third for a partial turbine fence
as compared with a complete turbine fence because
energy is lost as the turbine wake is dissipated. It
was noted in reference [4] from preliminary numer-
ical simulations that partial fences are ineffective ‘as
the water will tend to avoid it and flow through the
unrestricted part of the cross-section.’ Here, a simple
case where turbines are only placed where the depth
of the Minas Passage exceeds 60 m is considered.

In order to compare these runs to the original sim-
ulations, the value of κ1 used in the definition of λ∗

1 is
adapted as follows

κ1 = A1

AMP
κA

where κA is the frictional coefficient associated with
the turbines employed over area A1 and AMP the area
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Fig. 9 The non-dimensional turbine power, P∗
avg, versus

the non-dimensional turbine drag, λ∗
1, for numer-

ical simulations where turbines were placed over
the entire Minas Passage (solid line), only a thin
strip of the Minas Passage (dashed with circles),
and only the deep Minas Passage (dot-dash with
squares)

of the Minas Passage. The definition suggests that to
obtain the same net drag over a reduced turbine area,
the drag coefficient of the turbines must be increased,
that is, each turbine must work harder.

Figure 9 shows the comparison of the two scenarios
to the original simulations. The thin strip of turbines
gives virtually identical results to the original simula-
tions, suggesting that a single turbine fence across the
passage is sufficient to capture the maximum amount
of power. Although the deep-turbines scenario gives
similar results for small values of drag, the maximum
power obtained is only about one-half of the original
simulations. The explanation for this reduced power
lies in the fact that as the turbine drag increases, the
flow through the region without turbines increases.
And, thus, an increasing fraction of the flow through
the channel does not produce power.

These two scenarios offer a glimpse into how the
theory and power estimates presented here might be
extended to more realistic scenarios. A more detailed
discussion of the theory of isolated turbines and partial
fences is given in reference [17].

5 DISCUSSION AND CONCLUSION

Tidal power has recently received renewed attention
as the search for renewable, green power sources
intensifies. Recent publications [4, 10, 11, 13] have
established that in-stream turbines can generate sig-
nificant power. Here, the high tides in the Bay of Fundy
and, in particular, the large tidal flows through the

Minas Passage are examined. A theoretical framework
and the results of numerical simulations argue that up
to 7 GW of power could be extracted from the Minas
Passage. This is more than three times as large as the
estimate in reference [3] based on the kinetic energy
in the Minas Passage.

An adaptation of the theory of Garrett and Cum-
mins [10, 11, 13] gives algebraic formulas that can
be used to calculate the maximum turbine power and
the change in local tides in response to the turbines.
Despite many assumptions, the theory agrees remark-
ably well with the numerical simulations of the Bay of
Fundy–Gulf of Maine system that represented turbines
in the Minas Passage by an increase in the bottom drag.
The biggest difference between the theory and the sim-
ulations is that the amplitude of the forcing tide in the
Bay of Fundy decreases as the turbine drag increases,
whereas the theory assumes it is constant.This reduces
the tidal head at large values of the turbine drag and
decreases the maximum power. As well, formula (2)
with a given by the amplitude of the forcing tides is ver-
ified. This suggests that the greatest tidal power will be
possible in channels where the product of the flowrate
through the channel and the tidal amplitude at the
entrance of the channel is large.

The effects of extracting the maximum power are
significant. The tides in the Minas Passage and the
Minas Basin would decrease by 36 per cent. The Bay of
Fundy–Gulf of Maine system would be pushed closer
to resonance with the M2 tide, leading to an increase
in tides of over 15 per cent along the northeast coast
of the USA. However, a significant amount of power
can be extracted with limited effects on both the local
and far-field tides. For example, 2.5 GW of power can
be extracted with at most a 5 per cent change in the
tidal amplitudes. And, for small amounts of power
extraction, 0.77 GW of power can be extracted for each
percentage change in relative tidal amplitudes.

The simulations also indicate that the maximum
rate of power extraction can be achieved with a sin-
gle turbine fence and that partial turbine fences, while
able to extract a significant portion of the maximum
power, are less efficient.

It should be noted that in reference [9], Blanchfield
et al. applied the theory of reference [13] to Masset
Sound, a channel–basin system with a significantly dif-
ferent geometry than the Minas Passage–Basin system.
In reference [9], the undisturbed state gives β = 1.45
and λ∗

0 = 8 and the system behaves like the strong nat-
ural drag limit discussed in section 2. Although the
differences in systems are interesting. It is particu-
larly worth noting that the inclusion of other tidal
constituents can increase the maximum power signif-
icantly, by 9 per cent [9]. Initial calculations suggest
that a similar increase in the maximum power may be
possible for the Minas Passage. Numerical simulations
that include the forcing of other tidal constituents
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need to be run to test this possibility, but these sim-
ulations must necessarily be run for longer times to
calculate an appropriate mean power.

As well, the resolution of the numerical simulations
presented here may limit the ability to examine the
non-linear aspects of the flow. In particular, the simu-
lations do not show a strong effect of flow separation
as the flow exits the channel, as discussed in refer-
ence [10, 11, 13]. Instead, the geometry of the channel
plays a more important role by creating a strong, non-
linear jet near Cape Split, especially during flood tide.
The resolution is also not sufficient to examine the
details of the turbulent flow past a partial fence or an
isolated turbine as discussed in reference [17] and thus
may not be sufficient to examine the effectiveness of
turbines downstream of other turbines.

The results of Sucsy et al. [5] suggest that a three-
dimensional model does not improve the accuracy of
modelling the tides in the Bay of Fundy or significantly
change the effects of including a barrier. However, a
three-dimensional model would allow a more accu-
rate representation of turbines that extract power from
only a portion of the water column. It would also allow
the power associated with turbines to be properly dif-
ferentiated from that associated with bottom friction.
Thus, the goal of the ongoing work is to extend the
current results to the power potential of a farm of
realistic, isolated turbines using a higher-resolution,
three-dimensional model of the Minas Passage.
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APPENDIX 1

Notation
a amplitude of forcing tides (m)
Ab surface area of the Minas Basin (m2)
c acceleration coefficient (m−1)
E cross-sectional area of the Minas

Passage (m2)
g acceleration due to gravity (m/s2)
h depth of the Minas Passage (m)
L length of the Minas Passage (m)
Pavg mean turbine power (GW)
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Q volumetric flowrate through the channel
(m3/s)

Q0 maximum flowrate in the undisturbed
state (m3/s)

R the ratio of the amplitude of the basin
tides to the forcing tides

t time (s)
u velocity (m/s)
x along-channel coordinate (m)

β non-dimensional basin geometry param-
eter

γ maximum power ratio

ζb the relative change in the basin tides
ζ water surface elevation (m)
κ bottom-drag coefficient
λ drag parameter (m−4)
ρ density of sea water (kg/m3)
φ phase lag of basin tides
ω frequency of M2 tides (s−1)

Superscripts

∗ non-dimensional value
Q average of Q over a tidal period

Subscripts

0 associated with the undisturbed state
1 associated with turbines
b associated with the basin
o associated with the open-ocean forcing
m at maximum turbine power
MP associated with the Minas Passage
ref reference values

APPENDIX 2

Derivation of an approximate theoretical solution

Consider the dynamical system given by equations (3)
and (4) with the forcing tides given by equation (6),
that is

c
dQ
dt

+ λ|Q|Q = g (ζo − ζb) (34)

Q = Ab
dζb

dt
(35)

with

ζo = a cos(ωt) (36)

As the forcing tides are periodic, it is reasonable to
assume the solution to equation (34) can be written
as a Fourier series, which, using equation (35), can be

written as

ζb =
∞∑

n=1

αn cos(nωt − φn) and

Q = −ωAb

∞∑
n=1

αn sin(nωt − φn) (37)

Multiplying equation (34) by ρQ and averaging over a
tidal cycle gives

cρQ
dQ
dt

+ ρλ|Q|Q2 = ρg
(

Qζo − Qζb

)
(38)

Here, the over-line represents the average of a quantity
over a tidal cycle, that is

Q = 1
T

∫T+t0

t0

Q dt

Since ζb and Q are periodic, it follows that

Q
dQ
dt

= 1
2

dQ2

dt
= 0

and, using equation (35), that

Qζb = Ab
dζb

dt
ζb = 1

2
Ab

dζ 2
b

dt
= 0

And so, equation (38) reduces to

ρλ|Q|Q2 = gρζoQ (39)

The term on the left-hand side of equation (39) is the
mean power associated with the drag and is the focus
of this analysis since it contains the power generated
by the turbines. Equation (39) states that the power
associated with the drag is equal to the rate of work
done by the forcing tides at the channel entrance. If
equation (37) is substituted into the right-hand side
of equation (39), it follows from equation (36) and the
orthogonality of the different Fourier modes that

gρζoQ = gρωAbα1 sin(φ1)

Therefore, only the first mode in the Fourier series can
affect the power, suggesting that keeping only the first
mode might be a good approximation.

To further examine this possibility, the full solution
to equations (34) and (35) was calculated numeri-
cally, and then the Fourier series coefficients of ζb

were calculated. This was done for the undisturbed
state and at maximum turbine power. For compari-
son, the Fourier coefficients for the simulated Minas
Basin tides for the undisturbed and maximum power
case were also calculated. The results are shown in
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Table 2 The Fourier series coefficients of the solution ζb

to the theoretical model, (34) and (35), and the
simulated Minas Basin tides

α1 α2 α3 α4 α5 α6

Theory
Undisturbed 5.053 0.003 0.224 0.003 0.043 0.003
maximum power 3.398 0.001 0.157 0.001 0.041 0.001

Simulation
Undisturbed 5.302 0.158 0.116 0.003 0.009 0.004
maximum power 3.272 0.064 0.121 0.002 0.020 0.001

Table 2. It is clear that both the theoretical and sim-
ulated tides are dominated by the first component,
the M2 tide, and that all the higher harmonics are sig-
nificantly weaker, less than 5 per cent of the M2. As
well, it is clear that the full theoretical solution is not
accurately modelling all the higher modes of the sim-
ulated tides. The non-linear interaction in the drag in
equation (34) has the form |Q|Q and thus can only
excite odd modes, as seen in Table 2. However, in the
simulated tides, all higher modes are excited. In partic-
ular, in the undisturbed state the second mode, the M4

tide, has a relatively large amplitude. This suggests that
quadratic non-linearities of the form Q2 are important.
Therefore, it can be concluded that using only the first
mode in the Fourier series solution (37) is a reasonable
approximation.

Based on the above discussion, the solution is
assumed to be given by only the first Fourier mode,
that is

ζb = Ra cos(ωt − φ) (40)

and

Q = −RaωAb sin(ωt − φ) (41)

where the amplitude of the basin tides is written as a
multiple of the forcing amplitude, R = (ζb)max/a, φ is
the phase lag of the basin tides behind the forcing tides
and the form of Q follows from equation (35).

Substituting equation (41) into equation (39) gives

λ∗R2 = β2 sin φ (42)

where

λ∗ = 8
3π

ga
c2ω2

β = g
Abω2c

(43)

Similarly, a second equation can be found by multi-
plying equation (34) by ζb, averaging over a tidal period

and integrating the first term by parts to get

−cQ2 + λ|Q|Qζb = gζoζb − gζ 2
b

which, using equations (40) and (41), reduces to

(β − 1)R = β cos φ (44)

Finally, equations (42) and (44) can be solved for R
and φ to give

R2 = 2β2

(β − 1)2 + √
(β − 1)4 + 4(λ∗)2

and

sin φ = λ∗

β2
R2 (45)

APPENDIX 3

Numerical model description

The numerical simulations were run using FVCOM
[15, 16]. The grid that was used for the simulation
was a refinement of a grid generated by David Green-
berg at the Bedford Institute of Oceanography. The
original finite-element grid had 9521 triangular ele-
ments (Fig. 10) and covered the Bay of Fundy, the
Gulf of Maine, and part of the Atlantic Ocean (Fig. 1).
To increase the resolution of the grid, each triangular
element in the original grid was divided into 16 simi-
lar triangles, ensuring that the desirable properties of
the original grid were maintained. The final grid has
a total of 152 336 non-uniform triangular elements,
with 57 684 located in the Bay of Fundy, 1748 in the
Minas Passage, and 13 721 in the Minas Basin. The

Fig. 10 The figure shows the location of the tidal stations
given in Table 3. It also shows some of the grid
developed by David Greenberg. The grid that
was used for the results presented in this paper
has each of these triangular elements divided
into 16 similar triangles
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Table 3 The amplitudes (m) and phases (◦) of the tides from observations and as modelled in the numerical simulations. The
final three columns give the difference between the amplitudes and phases and the error (m) given by equation (46).
The last row gives the root mean square of the amplitudes, differences, and error. The locations of the stations are
shown in Fig. 10. The observed data were provided by David Greenberg of the Bedford Institute of Oceanography

Observed Modelled Difference

Station # Amp. Phase Amp. Phase Amp. Phase Error

Lockport 1 0.70 −1 0.72 −1.6 −0.02 −0.6 0.02
Seal Island 2 1.20 52 1.29 54.0 −0.08 2.0 0.09
Pinkney 3 1.55 59 1.52 61.3 0.03 2.3 0.07
Port Maitland 4 1.85 66 1.86 63.8 −0.01 −2.2 0.07
St Martins 5 3.69 102 3.68 101.1 0.01 −0.9 0.06
Isle Haute 6 4.18 99 4.07 96.5 0.11 −2.5 0.21
Cape D’Or 7 4.34 102 4.28 97.1 0.06 −4.9 0.37
Diligent River 8 4.88 113 4.82 105.6 0.06 −7.4 0.63
Five Islands 9 5.42 125 5.48 122.6 −0.06 −2.4 0.24
Margretsville 10 3.86 93 3.88 89.4 −0.02 −3.6 0.24
Parkers Cove 11 3.43 90 3.36 88.4 0.07 −1.6 0.12
Centreville 12 2.65 90 2.70 94.3 −0.05 4.3 0.21
West Narrows 13 2.23 78 2.44 72.3 −0.21 −5.7 0.32
Westport 14 2.20 80 2.18 79.1 0.02 −0.9 0.04
Meteghan 15 2.03 72 2.07 71.9 −0.04 −0.1 0.04
Cashes Ledge 16 1.20 98 1.24 100.0 −0.04 2.0 0.06
Rockland 17 1.50 98 1.48 100.5 0.02 2.5 0.07
Cape Porpoise 18 1.27 103 1.32 105.1 −0.05 2.1 0.07
Cape Cod Canal 19 1.24 109 1.38 109.5 −0.13 0.5 0.13
Monhegan 20 1.30 99 1.34 101.2 −0.04 2.2 0.06
Cape Cod Lighthouse 21 1.16 113 1.18 115.8 −0.02 2.8 0.06
Eastport 22 2.61 99 2.64 99.6 −0.03 0.6 0.04
B6 23 0.88 87 0.89 88.3 −0.01 1.3 0.02
D/M2 24 0.77 93 0.77 93.5 −0.00 0.5 0.01
M1 25 0.78 92 0.82 91.9 −0.04 −0.1 0.04
Offshore Chignecto 26 4.18 103 4.27 100.4 −0.09 −2.6 0.21
Offshore Grindstone 27 4.82 105 4.65 101.0 0.17 −4.0 0.37
Offshore Cumberland 28 4.74 105 4.67 101.6 0.07 −3.4 0.29
Offshore Minas 29 5.48 121 5.35 117.9 0.13 −3.1 0.32
Offshore Economy 30 5.89 126 5.73 122.3 0.16 −3.7 0.41
Offshore Cobequid 31 6.06 129 5.91 123.3 0.15 −5.7 0.61
Bar Harbor 32 1.55 93 1.57 94.4 −0.02 1.4 0.04
Portland 33 1.33 103 1.36 106.4 −0.03 3.4 0.08
Portsmouth 34 1.30 107 1.33 111.7 −0.03 4.7 0.11
Boston 35 1.34 111 1.36 116.2 −0.02 5.2 0.12
Saint John 36 3.04 98 3.05 97.2 −0.02 −0.8 0.04
Yarmouth 37 1.63 63 1.66 63.1 −0.03 0.1 0.03

r.m.s 3.13 3.10 0.08 3.1 0.23

average area of a triangular element is about 4 km2;
however, the resolution is greater in the Minas Pas-
sage and the Minas Basin, where the average areas
are 0.043 and 0.079 km2, respectively. This is a much
finer grid than that used in references [2] and [5]
but slightly coarser than the resolution used by ref-
erence [14], which examined the Bay of Fundy using
75 000 elements.

The M2 tidal phase and amplitude were specified on
the open boundary, and a fixed time step of 1/34 560
of the M2 tidal period was used. The model was spun
up for 12 tidal cycles and the analysis was carried out
for the next four tidal cycles. The minimum bottom
friction was tuned to give the lowest error as calculated
using the following formula from reference [14]

Error = ∣∣Ameiθm − Aceiθc
∣∣ (46)

where Am and Ac are the measured and calcu-
lated tidal amplitude in metres and θm and θc

are the measured and calculated tidal phases in
radians, respectively. This bottom-friction coefficient
was 0.0026. In comparison, reference [14] used a
coefficient of 0.0025, whereas reference [5] used
0.002. To achieve accurate results, reference [2]
used two different values: 0.0024 in the Gulf
of Maine and 0.0021 for the remainder of the
region.

The phase and amplitude of the tidal elevation
were calculated at each node and are compared
with observations in Table 3. The root mean square
of the difference in amplitude, the difference in
phase, and the error are 8 cm, 3.1◦, and 23 cm,
respectively. These are similar to previous results
[5, 14].
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