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a b s t r a c t

Linearized (Schwarz) domain decomposition approaches for nonlinear boundary value
problems of the form u′′

= f (x, u, u′), subject to Dirichlet boundary conditions, are
proposed and analyzed. In the presence of subsolutions and supersolutions, we construct
a globally convergent, linear, monotone iteration suitable for implementation in a dis-
tributed computing environment. These iterations provide an alternative to the typical,
locally convergent, approach of discretizing and solving the resulting non-linear algebraic
equations using a Newton iteration. Thework also extends previous results obtained in the
case where f has no dependence on the derivative of the solution. The Schwarz iteration is
first proposed and studied in detail on two subdomains. The result is then generalized to
an arbitrary number of subdomains. Both alternating and parallel Schwarz iterations are
analyzed. Numerical results are provided to demonstrate the theory and the utility of the
proposed iterations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the solution of nonlinear boundary value problems (BVPs) of the form

u′′
= f (x, u, u′), 0 < x < 1, u(0) = u(1) = 0. (1.1)

A standard numerical approach is to discretize (1.1) using finite differences or finite elements and solve the resulting system
of nonlinear algebraic equations using a Newton style iteration. Difficult BVPs require a good initial guess to ensure the
(local) convergence of the Newton iteration. Assuming the existence of subsolutions and supersolutions of (1.1), we propose
linearized iterations which are globally convergent to a solution (at the continuous level). The iterations utilize a divide
and conquer approach, solving the problem on subdomains, potentially to split the computational load across multiple
processors. Moreover, the approximate subdomain solutions are found by solving a linear problem during each iteration.

Monotonic iterative approaches for BVPs of the form

u′′
= f (x, u), u(a) = u(b) = 0, (1.2)

without u′ dependence, were first introduced by Picard [1] under the assumption that f (x, u) is continuous and decreasing
in u and f (x, 0) = 0. Picard demonstrates that there exists positive function α(0), known as a subsolution of the BVP, which
satisfies

α′′

(0) > f (x, α(0)), α(0)(a) = α(0)(b) = 0. (1.3)
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He then considers the iteration

α′′

(n) = f (x, α(n−1)), α(n)(a) = α(n)(b) = 0. (1.4)

The sequenceα(n) is shown to convergemonotonically to a solution u of (1.2). A supersolution,β(0), of (1.2)would satisfy (1.3)
with the inequality reversed. Of course these schemes were originally used as theoretical tools, to prove the well-posedness
of the BVP. It was much later that the computational utility of the iterations would be seen.

Babkin [2] extended Picard’s iterative scheme. For given subsolution α(0) and supersolution β(0) satisfying boundary
conditions, he considered the approximation schemes

α′′

(n) + Kα(n) = f (x, α(n−1)) + Kα(n−1), α(n)(a) = 0, α(n)(b) = 0,
β ′′

(n) + Kβ(n) = f (x, β(n−1)) + Kβ(n−1), β(n)(a) = 0, β(n)(b) = 0,

where K is a non-positive constant chosen so that f (x, u) + Ku is decreasing in u. Then the sequences α(n) and β(n) are
monotonically convergent to solutions of the BVP. Each iteration requires the solution of a linear BVP; the nonlinear BVP is
replaced by a convergent sequence of linear BVPs.

Courant and Hilbert [3], generalized Babkin’s iteration, and introduced a monotonic iterative approach for the solution
of partial differential equations of the form

△u = f (x, u), x ∈ Ω ⊂ Rn, u = Φ on ∂Ω. (1.5)

Here f is defined and has continuous first derivatives for all x ∈ Ω̄ and for all u. The boundary and boundary values are
assumed to be smooth. The function f is assumed to be bounded on Ω̄ by a constant N > 0, that is | f (x, u) |≤ N . Assuming
an initial approximation α0(x) solving △α0 = −N, α0 = 0 on ∂Ω, the authors show that the sequence α(n) satisfying

△α(n) + Kα(n) = f (x, α(n−1)) + Kα(n−1), α(n) = 0 on ∂Ω,

decreases monotonically to a solution umax for a suitable choice of K . If the iteration is started from −α0 then the sequence
is monotonically increasing to a solution umin. If u is any other solution of (1.5) then umin ≤ u ≤ umax. Again each iterate
is obtained by solving a linear boundary value problem. Subsequently, Parter [4] extended Courant’s work by imposing
weaker smoothness requirements. He goes on to consider the convergence of such schemes at the discrete level. Two-sided
convergence and resulting error bounds are considered in [5].

In the late 1960s and early 1970s, see, for example [6–9], the analysis was extended to provide linear monotone schemes
for problems of the form Lu = −f (x, u), x ∈ Ω,Bu = 0, x ∈ ∂Ω , where B is a linear boundary operator and L is a
uniformly elliptic second order partial differential operator for which the strong maximum principle holds. Stuart [10]
provided a monotone scheme for the BVP (1.2) in the case that f is of bounded variation on the interval. The resulting
scheme, however, requires nonlinear solves at each iteration. More recently, problems with nonlinear boundary conditions
have been considered, see [11].

The problemwith u′ dependence in the right-hand side function ismore difficult. The first results, assuming the existence
of subsolutions and supersolutions, were obtained by Dragoni [12] who proved that solutions exist for the BVPs of the form
(1.1) when f is continuous and bounded. The proof was not constructive, no iteration was provided for the computation of a
solution. Generalizing Babkin’s iteration, Gendzojan [13] developed a linear monotone iterative method for the BVP of the
form (1.1). For a given subsolution α(0) and supersolution β(0) he considered the iterations: for n = 1, 2, 3, . . .,

− α′′

(n) + K (x)α′

(n) + l(x)α(n) = − f (x, α(n−1), α
′

(n−1))
+ K (x)α′

(n−1) + l(x)α(n−1), onΩ, (1.6)
α(n) = 0 on ∂Ω,

− β ′′

(n) + K (x)β ′

(n) + l(x)β(n) = − f (x, β(n−1), β
′

(n−1))
+ K (x)β ′

(n−1) + l(x)β(n−1), onΩ, (1.7)
β(n) = 0 on ∂Ω.

Here the functions K (x) and l(x), depend on f , and are chosen in order to get explicit representations of the iterates. The
function f (x, u, u′) is assumed to be continuous with continuous derivatives fu, fu′ and 0 ≤ fu ≤ M , |fu′ | ≤ M for someM , for
all (u, u′) ∈ R2.

Other authors have constructed monotone schemes for problem (1.1) in the presence of subsolutions and supersolu-
tions. Chandra and Davis [14] developed an iterative method to solve a problem that depends linearly on the derivative
of the solution. Following that, Bernfeld and Chandra [15] generalized this method for a right hand side function f that
depends on the derivative of the unknown solution nonlinearly. The schemeproduces a sequence of iterateswhich converges
monotonically but computationallywe are forced to solve a sequence of nonlinear problems if f is nonlinear inu′. Later Omari
[16] developed an iterative scheme for the BVP of the form u′′

= f (x, u, u′), x ∈ Ω,Bu = r, x ∈ ∂Ω , where B is a first order
linear continuous boundary operator. For a given subsolution α(0) and supersolution β(0), he constructed a monotone, but
again nonlinear, scheme.
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Fig. 1. Partitioning of Ω = [0, 1] into two overlapping subdomains.

Cherpion et al. [17] proceed as in [13] in the presence of ordered subsolutions and supersolutions. Cherpion proposed a
linearized iteration scheme with a slightly simpler choice of the coefficients for problem (1.1). The iteration scheme is given
by: for n = 1, 2, 3, . . .

− α′′

(n) +
3√lK (x)α′

(n) + lα(n) = − f (x, α(n−1), α
′

(n−1))

+
3√lK (x)α′

(n−1) + lα(n−1), onΩ, (1.8)
α(n) = 0 on ∂Ω,

− β ′′

(n) +
3√lK (x)β ′

(n) + lβ(n) = − f (x, β(n−1), β
′

(n−1))

+
3√lK (x)β ′

(n−1) + lβ(n−1), onΩ (1.9)
β(n) = 0 on ∂Ω,

where α(0) and β(0) are the subsolution and supersolution of BVP (1.1) respectively, K (x) is an antisymmetric function on
Ω and l > 0 is a constant depending on f . Cherpion’s analysis makes less restrictive assumptions on f than required
by Gendzojan [13]. The function f is assumed to be Lipschitz in u′ and one-sided Lipschitz in u. We will extend Cherpion’s
scheme to multiple domains and prove convergence of the resulting domain decomposition algorithms in Section 3.

On a single domain other types of boundary conditions have been considered for (1.1). Periodic problems have been
studied in, for example, Leela [18], Bellen [19], Omari and Trombetta [20], and Cherpion [21]. Neumann problems are
considered in [22,23].

To take advantage of parallel computing, one method to solve BVPs is domain decomposition (DD). DD is based on a
divide and conquer philosophy, it divides a big problem into several subproblems on smaller overlapping or non-overlapping
subdomains. These subdomains form a partition of the original domain. There are several general classes of DD approaches
for nonlinear problems. Detailed discussion of DD methods applied to some nonlinear BVPs can be found in [24–26].
In [26], for example, the authors proposed a nonlinear DD method, where on each subdomain a nonlinear BVP with
Dirichlet boundary conditions is solved, for a specific BVP related to mesh generation. The drawback of nonlinear Schwarz
methods discussed therein is that in each iteration the solution of many nonlinear systems of equations is required (one
for each subdomain). Linearized DD methods avoid these costly nonlinear solves and, as we will see, in the presence of
subsolutions and supersolutions, can also providemonotonic convergence to a solution. Herewedevelop a linearized domain
decomposition method which can solve the BVPs of the form u′′

= f (x, u, u′), where f (x, u, u′) depends on u′ nonlinearly.
Similar work, developing linearized, monotone domain decomposition methods for nonlinear problems, exists. Lui [27]

considers the PDE

− ∆u = f (x, u) on Ω ⊂ RN , u = h on ∂Ω, (1.10)

studied earlier by Courant. In one dimension, for example, the domain Ω is decomposed into two overlapping subdomains,
Ω1 = (0, t) and Ω2 = (s, 1) with s < t , as shown in Fig. 1. Here Ω̄ \ Ω̄1 denotes the portion of the domain Ω2 that does not
overlap with Ω̄1, and Ω̄ \ Ω̄2 denotes the portion of Ω1 that does not overlap with Ω̄2.

If f is Hölder continuous function, with Hölder exponent α, that is f ∈ Cα(Ω̄), and there exists c(x) ∈ Cα(Ω̄) such that
−c(x)(u − v) ≤ f (x, u) − f (x, v) on Ω , then for a given subsolution u or supersolution ū with α(0) = u (or analogously with
β(0) = ū), Lui considers the two subdomain iteration scheme: for n = 0, 1, 2, . . .

− ∆α(n+ 1
2 )

+ cα(n+ 1
2 )

= f (α(n− 1
2 )
) + cα(n− 1

2 )
on Ω1, (1.11)

α(n+ 1
2 )

= α(n) on ∂Ω1,

and

− ∆α(n+1) + cα(n+1) = f (α(n)) + cα(n) on Ω2, (1.12)
α(n+1) = α(n+ 1

2 )
on ∂Ω2.

This is an example of a multiplicative Schwarz domain decomposition method. Lui [27] proved that if this iteration starts
from a subsolution then it will converge to a minimal solution umin and if the iteration starts from a supersolution then it
will converge to a maximal solution umax. If u is any other solution of the problem then umin ≤ u ≤ umax.
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In this paper, we follow Lui and propose and prove convergence of a multiplicative Schwarz version of the iterations (1.8)
and (1.9) proposed by Cherpion to solve BVPs of the form (1.1). Wewill also provide an analysis of a parallel Schwarz variant
of this iteration and extend the analysis to an arbitrary number of subdomains. Our one-dimensional results may at first
glance seem modest when compared to the more general results of Lui. The development of monotone schemes (even on a
single domain) for problems with an explicit gradient dependence, however, is much more difficult. And as we will see the
derivative dependence also complicates the multi-domain analysis. We note that in [27], the author refers to the parallel
Schwarz style iteration considered here on multiple subdomains as an additive Schwarz iteration. Additive Schwarz now
commonly refers to a particular choice of a preconditioner used to solve a discretized PDE, see [28]. We also note that the
parallel Schwarz iteration considered here and in [27] uses different transmission conditions at the boundary to ensure the
monotonicity of the scheme.

The remainder of this paper is organized as follows. In Section 2 we define the nonlinear BVP of interest and clearly state
our required assumptions. We then specify the alternating and parallel linearized Schwarz iterations that we analyze. In
Section 3we prove thewell-posedness of the Schwarz iterations and prove themain convergence results. Section 4 provides
numerical results to demonstrate the theory developed in Section 3. We make some conclusions and comments in the final
section.

2. Preliminaries

We consider the Dirichlet problem

− u′′
+ f (x, u, u′) = 0 on Ω = (a, b), u = 0 on ∂Ω. (2.1)

We assume the existence of subsolutions and supersolutions of (2.1); these functions are defined in Definition 2.1 and
Definition 2.2.

Definition 2.1 (Subsolution). A function α ∈ C2([a, b]) is a subsolution of (2.1) if
(I) for all x ∈ [a, b], α′′(x) ≥ f (x, α(x), α′(x));
(II) α(a) ≤ 0, α(b) ≤ 0.

Definition 2.2 (Supersolution). A function β̄ ∈ C2([a, b]) is a supersolution of (2.1) if
(I) for all x ∈ [a, b], β̄ ′′(x) ≤ f (x, β̄(x), β̄ ′(x));
(II) β̄(a) ≥ 0, β̄(b) ≥ 0.

We state our assumptions and conditions on the function f in (2.1) and the problem data in Definition 2.3.

Definition 2.3. [C1] Let α and β̄ ∈ C2([a, b]) be ordered subsolutions and supersolutions of (2.1) such that α ≤ β̄ . We define
the set D as

D =
{
(x, u, u′) ∈ [a, b] × R2

| α(x) ≤ u ≤ β̄(x)
}
,

and assume f : D → R is a continuous function.
[C2] One Sided Lipschitz Condition in u: Assume there exists a constantM ≥ 0 such that for all (x, u1, v), (x, u2, v) ∈ D and
for all u1 ≤ u2,

f (x, u2, v) − f (x, u1, v) ≤ M(u2 − u1).

[C3] Lipschitz Condition in u′: Assume there exists a constant N ≥ 0 such that for all (x, u, v1), (x, u, v2) ∈ D,

| f (x, u, v2) − f (x, u, v1) |≤ N | v2 − v1 | .

[C4] For a given u(x) we define F u(x) := f (x, u(x), u′(x)). At points in the paper we will assume that F u is a Hölder continuous
function with exponent α.
[C5] Assume K ∈ C[a, b], with K (a) > 0, is anti-symmetric on [a, b], that is K satisfies K (x) = −K (a + b − x).

[C6] Assume l ∈ R satisfies l > max
{
M, N3

(K (a))3

}
.

The constant l will appear in our iterations to solve (2.1) and will require further restrictions to ensure monotone
convergence. The strongerHölder continuity requirementwill be used to establish C2 convergence of ourmonotone schemes.

Remark1. Assuming the existence of subsolutions and supersolutions of (2.1) satisfyingDefinitions 2.1 and2.2 and assuming
f satisfies conditions [C1], [C2] and [C3] then Cherpion et al. prove the existence of solutions of (2.1), see [17,21].

Here we introduce some preliminary results useful in our analysis. The following result is classical and the proof may be
found in [21], see also [29].
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Lemma 2.4 (Maximum Principle). Suppose p, q, h ∈ L1(a, b) (integrable functions), with q(x) ≥ 0 and h(x) ≤ 0 on [a, b]. And
assume A ≥ 0 and B ≥ 0. If u is a non-constant solution of

u′′
− p(x)u′

− q(x)u = h(x)
u(a) = A, u(b) = B,

then u satisfies u(x) > 0 on (a, b). Furthermore, if u(a) = 0 then u′(a) > 0 and if u(b) = 0 then u′(b) < 0.

The following inequality is used numerous times in our analysis.

Lemma 2.5. Assume conditions [C2]–[C3] are satisfied, u, v ∈ C1([a, b]), (x, u, u′), (x, v, v′) ∈ D (as defined in [C1]) and u ≤ v,
then

f (x, v, v′) − f (x, u, u′) ≤ M(v − u) + N|v′
− u′

|

= M(v − u) + Nsign(v′
− u′) · (v′

− u′).

Proof. If u ≤ v then conditions [C2] and [C3] imply

f (x, v, v′) − f (x, u, u′) = f (x, v, v′) − f (x, u, v′) + f (x, u, v′) − f (x, u, u′)
≤ M(v − u) + N|v′

− u′
|. ■

Using Lemmas 2.4 and 2.5 we may prove the following result which characterizes the difference between subsolutions
and supersolutions of (2.1).

Lemma 2.6. Assume α and β̄ , with α ≤ β̄ , are a subsolution and supersolution of (2.1), as defined in Definitions 2.1 and 2.2,
which satisfy the boundary conditions α(a) = β̄(a) = 0 and α(b) = β̄(b) = 0. If α and β̄ are not solutions of (2.1), then
β̄ − α > 0 on (a, b), β̄ ′(a) − α′(a) > 0 and β̄ ′(b) − α′(b) < 0. Furthermore, if K (x) satisfies condition [C5] and f satisfies [C2]
and [C3] then

f (x, β̄, β̄ ′) − f (x, α, α′) −
3√lK (x)(β̄ ′

− α′) − l(β̄ − α) ≤ 0 (2.2)

is satisfied for l sufficiently large.

Proof. Since α ≤ β̄ , α′′
≥ f (x, α, α′) and β̄ ′′

≤ f (x, β̄, β̄ ′) then Lemma 2.5 ensures

β̄ ′′
− α′′

≤ M(β̄ − α) + N|β̄ ′
− α′

|.

Then w = β̄ − α satisfies w′′
− N|w′

| − Mw ≤ 0 on Ω = (a, b), and w = 0 on ∂Ω , since α and β̄ agree at a and b.
Since |w′

| = sign(w′)w′ and sign(w′) ∈ L1(a, b) then by Lemma 2.4 we have w = β̄ − α > 0 on Ω , β̄ ′(a) − α′(a) > 0 and
β̄ ′(b) − α′(b) < 0.

Define G(l, x) := f (x, β̄, β̄ ′) − f (x, α, α′) −
3√lK (x)(β̄ ′

− α′) − l(β − α). Since K is chosen so that K (a) > 0 and K (b) =

−K (a) < 0 then K (a)(β̄ ′(a) − α′(a)) := γa > 0 and K (b)(β̄ ′(b) − α′(b)) =: γb > 0. For given α, β̄ ∈ C2, with f continuous
on D, the mapping x → f (x, β̄(x), β̄ ′(x)) − f (x, α(x), α′(x)) is continuous on [a, b]. Hence f (x, β̄(x), β̄ ′(x)) − f (x, α(x), α′(x))
achieves its upper bound, F say. Define G̃(l, x) := F −

3√lK (x)(β̄ ′
− α′) − l(β̄ − α).

Since γa, γb > 0 and β̄(a)− α(a) = β̄(b)− α(b) = 0 then clearly G̃(l, a) = F −
3√lγa ≤ 0 and G̃(l, b) = F −

3√lγb ≤ 0, for
l sufficiently large. By continuity there exists a δa > 0 so that K (x)(β̄ ′(x)−α′(x)) ≥

1
2γa > 0 for x ∈ [a, a+ δa]. On [a, a+ δa],

β̄ − α ≥ 0, so G̃(l, x) ≤ F −
3√l
2 γa ≤ 0, for l sufficiently large. Likewise, there exists a δb > 0 so that K (x)(β̄ ′

− α′) ≥
1
2γb > 0

on [b − δb, b]. On [b − δb, b], β̄ − α ≥ 0, so G̃(l, x) ≤ F −
3√l
2 γb ≤ 0 for l sufficiently large. On [a + δa, b − δb], β̄ − α is

continuous so it attains its positive minimum, m, that is β̄ − α ≥ m > 0. Likewise, K (x)(β̄ ′
− α′) attains it minimum, d, on

[a + δa, b − δb]. So we have G̃(l, x) ≤ F −
3√ld − lm on [a + δa, b − δb]. If l is sufficiently large, then G̃ ≤ 0 independent of

the sign of d. Since G(l, x) ≤ G̃(l, x), G(l, x) ≤ 0 for x ∈ [a, b] and l sufficiently large. ■

The following lemma characterizes the solution of the linear boundary value problems we will encounter in our analysis.
The non-negativity of w follows from Lemma 2.4. The well-posedness of the linear elliptic boundary value problem can be
found in [30]. The proof of the inequality (2.4) is suggested in [21] and can be found in complete detail in [31].

Lemma 2.7. Consider the problem

w′′
−

3√lK (x)w′
− lw = h(x), w(a) = A, w(b) = B, (2.3)

on the interval [a, b], where l is a positive real scalar, K ∈ C[a, b], and A ≥ 0, B ≥ 0. If h is a continuous function on [a, b] then
there exists a unique C2 solution, w(x), on [a, b]. If in addition h is non-positive, then w(x) ≥ 0 and

(M − l)w + (N sign(w′) −
3√lK (x))w′

≤ 0, on [a, b], (2.4)

if conditions [C5] and [C6] are satisfied and l is sufficiently large.



R.D. Haynes, F. Ahmed / Journal of Computational and Applied Mathematics 346 (2019) 620–637 625

Proof. We sketch the proof of the inequality (2.4) here and refer to Ahmed [31] for the complete details.
The solution of (2.3) is given by

w(x) = z2(x)
[∫ x

a

z1(s)h(s)
z ′

2(s)z1(s) − z2(s)z ′

1(s)
ds

]
+ z1(x)

[∫ b

x

z2(s)h(s)
z ′

2(s)z1(s) − z2(s)z ′

1(s)
ds

]
+

Az2(x)
z2(a)

+
Bz1(x)
z1(b)

,

where z1 and z2 are the solutions of homogeneous problems

z ′′

1 (x) −
3√lK (x)z ′

1(x) − lz1(x) = 0, z1(a) = 0, z ′

1(a) = 1,

z ′′

2 (x) −
3√lK (x)z ′

2(x) − lz2(x) = 0, z2(b) = 0, z ′

2(b) = −1.

One can show that z2(x) = z1(a + b − x), for x ∈ (a, b], z1(x) > 0, and for x ∈ [a, b) we have z ′

1(x) > 0, z2 > 0 and z ′

2(x) < 0.
Using these properties and the symmetry of K it is possible to show that z1 satisfies the inequality

(M − l)z1(x) + (N sign(w′) −
3√lK (x))z ′

1(x) ≤ 0

and z2 satisfies the inequality

(M − l)z2(x) + (N sign(w′) −
3√lK (x))z ′

2(x) ≤ 0,

for l sufficiently large. These inequalities for z1 and z2 and the expression for w can then be used to show (2.4). ■

The smoothness assumption on the coefficients and the inhomogeneity in (2.3) can be weakened, see [30] for details. In
the next section we propose and analyze various Schwarz methods to solve (2.1).

3. Domain decomposition results

3.1. Alternating linear Schwarz on two subdomains

Following Lui [27], we consider an alternating Schwarz iteration to solve (2.1) on Ω = (0, 1) with u = 0 on ∂Ω . We
decompose Ω into two overlapping subdomains Ω1 = (0, t) and Ω2 = (s, 1) with s < t as shown in Fig. 1.

For a given subsolution α, we set α(− 1
2 )

= α(0) = α on Ω̄ , with α = 0 on ∂Ω and iterate on two subdomains as: for
n = 0, 1, 2, . . .

− α′′

(n+ 1
2 )

+
3√lK (x)α′

(n+ 1
2 )

+ lα(n+ 1
2 )

= − f (x, α(n− 1
2 )

, α′

(n− 1
2 )
)

+
3√lK (x)α′

(n− 1
2 )

+ lα(n− 1
2 )

, on Ω1, (3.1)

α(n+ 1
2 )

= α(n) on ∂Ω1, α(n+ 1
2 )

= α(n) on Ω̄ \ Ω̄1,

and

− α′′

(n+1) +
3√lK (x)α′

(n+1) + lα(n+1) = − f (x, α(n), α
′

(n))

+
3√lK (x)α′

(n) + lα(n), on Ω2, (3.2)

α(n+1) = α(n+ 1
2 )

on ∂Ω2, α(n+1) = α(n+ 1
2 )
on Ω̄ \ Ω̄2.

Given a supersolution β̄ , we set β(− 1
2 )

= β(0) = β̄ on Ω̄ , with β̄ = 0 on ∂Ω and iterate on two subdomains as: for
n = 0, 1, 2, . . .

− β ′′

(n+ 1
2 )

+
3√lK (x)β ′

(n+ 1
2 )

+lβ(n+ 1
2 )

= −f (x, β(n− 1
2 )

, β ′

(n− 1
2 )
)

+
3√lK (x)β ′

(n− 1
2 )

+ lβ(n− 1
2 )

on Ω1, (3.3)

β(n+ 1
2 )

= β(n) on ∂Ω1, β(n+ 1
2 )

= β(n) on Ω̄ \ Ω̄1,

and

− β ′′

(n+1) +
3√lK (x)β ′

(n+1) + lβ(n+1) = − f (x, β(n), β
′

(n))

+
3√lK (x)β ′

(n) + lβ(n) on Ω2 (3.4)

β(n+1) = β(n+ 1
2 )

on ∂Ω2, β(n+1) = β(n+ 1
2 )
on Ω̄ \ Ω̄2.

We will ultimately show that it is possible to choose the coefficient function K (x) and constant l > 0 to guarantee
monotonic convergence of these iterations.

The well-posedness of the iteration, as stated in Lemma 3.1, follows directly from Lemma 2.7.
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Lemma3.1. Assuming K ∈ C[0, 1] and l > 0, then the iterations defined in (3.1)–(3.2) and (3.3)–(3.4) arewell-posed if conditions
[C2] and ([C3] or [C4]) are satisfied.

To prove convergence of the alternating Schwarz iteration (3.1) and (3.2) we show the subdomain solutions are bounded
and monotonic. Specifically, we show the iterates from (3.1) and (3.2) satisfy

α ≤ α(n) ≤ α(n+ 1
2 )

≤ α(n+1) ≤ α(n+ 3
2 )

≤ β̄, for n = 0, 1, 2 . . . .

This guarantees the pointwise convergence of the sequence of iterates. We then use elliptic regularity theory and a Nagumo
type argument to demonstrate that the pointwise limit is indeed a solution to the boundary value problem (2.1) on [0, 1].

We begin with two results which will help our analysis.

Lemma 3.2. Suppose C2 functions y(x) and z(x) satisfy

− y′′
+

3√lK (x)y′
+ ly = −f (x, z, z ′) +

3√lK (x)z ′
+ lz, on U, (3.5)

then

w′′
−

3√lK (x)w′
− lw = f (x, z, z ′) − z ′′ on U,

where w = y − z.

Proof. Simply add −z ′′ to both sides of (3.5) and rearrange to get

(y′′
− z ′′) −

3√lK (x)(y′
− z ′) − l(y − z) = f (x, z, z ′) − z ′′.

Introducing w = y − z gives the desired result. ■

Lemma 3.3. Suppose C2 functions y and z, with y ≥ z, satisfy (3.5), then

f (x, y, y′) − y′′
≤ (M − l)w + (Nsign(w′) −

3√lK (x))w′,

where w = y − z.

Proof. By Lemma 2.5, if y ≥ z and w = y − z then

f (x, y, y′) − f (x, z, z ′) ≤ Mw + N|w′
|. (3.6)

Adding f (x, y, y′) to both sides of (3.5) and rearranging gives

f (x, y, y′) − y′′
= f (x, y, y′) − f (x, z, z ′) −

3√lK (x)w′
− lw.

Inequality (3.6) and the fact that |w′
| = sign(w′)w′ then imply

f (x, y, y′) − y′′
≤ (M − l)w + (Nsign(w′) −

3√lK (x))w′. ■

Our main analysis begins with a lemma that shows if we start the iteration on Ω1 with a subsolution then all the
subsequent subdomain iterates remain subsolutions. Further, we show on each subdomain the iterates form a monotonic
sequence. We begin with the following assumption.

Assumption 1. In what follows we will assume that l is sufficiently large so that [C6], (2.2) in Lemma 2.6, and (2.4) in
Lemma 2.7 holds.

Lemma 3.4. Consider iteration (3.1)–(3.2) subject to conditions [C1]–[C3] and [C5], and l is sufficiently large so that Assumption 1
holds. Then for all n = 0, 1, . . . , α(n+ 1

2 )
and α(n+1) are subsolutions of (2.1) on Ω1 and Ω2 respectively. Furthermore the

subdomain solutions satisfy α(n) ≤ α(n+1) and α(n+ 1
2 )

≤ α(n+ 3
2 )
.

Proof. We will prove this lemma by induction. On Ω1, for n = 0, using α(−1/2) = α(0), Eq. (3.1) becomes

− α′′

( 12 )
+

3√lK (x)α′

( 12 )
+ lα( 12 )

= − f (x, α(0), α
′

(0)) +
3√lK (x)α′

(0) + lα(0). (3.7)

Using Lemma 3.2 with y = α( 12 )
and z = α(0) we obtain

w′′
−

3√lK (x)w′
− lw = f (x, α(0), α

′

(0)) − α′′

(0), (3.8)

wherew = α( 12 )
−α(0). Asα(0) is a subsolution,we know f (x, α(0), α

′

(0))−α′′

(0) ≤ 0. The boundary conditions requireα( 12 )
= α(0)

on ∂Ω1, that is, w = 0 on ∂Ω1. Hence from Lemma 2.4 we conclude w ≥ 0 or α( 12 )
≥ α(0) on Ω1. Lemma 3.3 then implies

f (x, α( 12 )
, α′

( 12 )
) − α′′

( 12 )
≤ (M − l)w + (Nsign(w′) −

3√lK (x))w′.
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Since w satisfies (3.8), with a non-positive right hand side, and w = 0 on ∂Ω1 then Lemma 2.7 ensures

(M − l)w + (Nsign(w′) −
3√lK (x))w′

≤ 0.

This implies

f (x, α( 12 )
, α′

( 12 )
) − α′′

( 12 )
≤ 0.

Hence we conclude that α( 12 )
is a subsolution of (2.1).

Repeating this analysis on Ω2, for n = 0, we have by Lemma 3.2 with y = α(1) and z = α(0)

w′′
−

3√lK (x)w′
− lw = f (x, α(0), α

′

(0)) − α′′

(0), (3.9)

where w = α(1) − α(0). Since α(0) is a subsolution of (2.1), f (x, α(0), α
′

(0)) − α′′

(0) ≤ 0. We have already seen that on Ω1,
α( 12 )

≥ α(0). Since the left boundary of Ω2 lies in Ω1 where α(1) = α( 12 )
, we have w = α(1) − α(0) ≥ 0 on ∂Ω2 and therefore

by Lemma 2.4, w ≥ 0, that is α(1) ≥ α(0), on Ω2. Lemma 3.3 then ensures

f (x, α(1), α
′

(1)) − α′′

(1) ≤ (M − l)w + (Nsign(w′) −
3√lK (x))w′.

Since w satisfies (3.9), with a non-positive right hand side, and w = α(1) − α(0) = α( 12 )
− α(0) ≥ 0 on ∂Ω1 (as shown

earlier), then using Lemma 2.7 we have f (x, α(1), α
′

(1)) − α′′

(1) ≤ 0, and hence we conclude that α(1) is a subsolution.
Now assume that for some n, α(n+ 1

2 )
and α(n) are subsolutions of (2.1), and further assume α(n+ 1

2 )
≥ α(n− 1

2 )
and

α(n+1) ≥ α(n). We will prove that α(n+ 3
2 )

≥ α(n+ 1
2 )

, α(n+2) ≥ α(n+1) and both α(n+ 3
2 )

and α(n+1) are subsolutions.

Evaluating (3.1) at iteration n + 1 we have

− α′′

(n+ 3
2 )

+
3√lK (x)α′

(n+ 3
2 )

+ lα(n+ 3
2 )

= − f (x, α(n+ 1
2 )

, α′

(n+ 1
2 )
)

+
3√lK (x)α′

(n+ 1
2 )

+ lα(n+ 1
2 )

.

Using Lemma 3.2 with y = α(n+ 3
2 )

and z = α(n+ 1
2 )

we have

w′′
−

3√lK (x)w′
− lw = f (x, α(n+ 1

2 )
, α′

(n+ 1
2 )
) − α′′

(n+ 1
2 )

, (3.10)

wherew = α(n+ 3
2 )

−α(n+ 1
2 )
. As α(n+ 1

2 )
is a subsolution we have f (x, α(n+ 1

2 )
, α′

(n+ 1
2 )
)−α′′

(n+ 1
2 )

≤ 0. By the induction hypothesis

w = α(n+1) − α(n) ≥ 0 on ∂Ω1. Hence Lemma 2.4 ensures w ≥ 0 on Ω1, that is, α(n+ 3
2 )

≥ α(n+ 1
2 )

on Ω1. Lemma 3.3 then
ensures

f (x, α(n+ 3
2 )

, α′

(n+ 3
2 )
) − α′′

(n+ 3
2 )

≤ (M − l)w + (Nsign(w′) −
3√lK (x))w′, (3.11)

wherew satisfies (3.10) which has a non-positive right hand side. Using the imposed boundary conditions and the induction
hypothesis, w ≥ 0 at the boundaries, and Lemma 2.7 ensures the right hand side of (3.11) is non-positive. Hence
f (x, α(n+ 3

2 )
, α′

(n+ 3
2 )
) − α′′

(n+ 3
2 )

≤ 0 and by induction α(n+ 3
2 )

is a subsolution for all n. A similar argument on Ω2 shows that if
α(n+1) ≥ α(n) and α(n) is a subsolution then α(n+2) ≥ α(n+1) and α(n+1) is a subsolution, which completes the proof. ■

In a similar fashion we can prove the following lemma.

Lemma3.5. Consider iteration (3.3)– (3.4) subject to conditions [C1]–[C3] and [C5], and l is sufficiently large so that Assumption 1
holds. Then for all n = 0, 1, . . . , β(n+ 1

2 )
and β(n+1) are supersolutions of (2.1) on Ω1 and Ω2 respectively and βn ≤ βn+1 and

βn+ 1
2

≤ βn+ 3
2
.

The next lemma is a technical result which will help us prove the chain of inequalities in Lemma 3.7.

Lemma 3.6. Assume α(n+ 1
2 )

and α(n+1) are the sequences defined by (3.1) and (3.2) respectively, subject to conditions [C1]–[C3]

and [C5], and l is sufficiently large so that Assumption 1 holds. Define the differences w(n) = α(n) − α(n− 1
2 )

. If w(n) ≥ 0, then on
Ω12 = Ω1 ∩ Ω2, w(n+1) satisfies

w′′

(n+1) −
3√lK (x)w′

(n+1) − lw(n+1) ≤ (M − l)w(n) + (Nsign(w′

(n)) −
3√lK (x))w(n).

Proof. On Ω12 subtract the defining equations for α(n+ 1
2 )

and α(n+1). Using the definition of w(n) and w(n+1) we find

−w′′

(n+1) +
3√lK (x)w′

(n+1) + lw(n+1) =

−f (x, α(n), α
′

(n)) + f (x, α(n− 1
2 )

, α′

(n− 1
2 )
) +

3√lK (x)w′

(n) + lw(n).



628 R.D. Haynes, F. Ahmed / Journal of Computational and Applied Mathematics 346 (2019) 620–637

Add and subtract f (x, α(n− 1
2 )

, α′

(n− 1
2 )
) to the left side of the above inequality. If w(n) ≥ 0 then using Lemma 2.5 gives the

required result. ■

In the following lemma we will continue the chain of inequalities and demonstrate a relation between α(n+ 1
2 )

and α(n+1).

Lemma 3.7. Assume α(n+ 1
2 )

and α(n+1) are the sequences defined by (3.1) and (3.2) respectively, subject to conditions [C1]–[C3]
and [C5], and l is sufficiently large so that Assumption 1 holds. Then for n = 0, 1, . . .,

α ≤ α(n) ≤ α(n+ 1
2 )

≤ α(n+1) ≤ α(n+ 3
2 )

on Ω. (3.12)

Furthermore, we show that on Ω12 ≡ Ω1 ∩ Ω2, the differences w(n+ 1
2 )

= α(n+ 1
2 )

− α(n) and w(n+1) = α(n+1) − α(n+ 1
2 )

satisfy a

BVP of the form (2.3) with non-positive right hand side and non-negative boundary conditions.

Proof. We proceed by induction. Let Ω12 = Ω1 ∩ Ω2. By definition α(0) = α(− 1
2 )
, hence w(0) = 0 on Ω12. Hence Lemma 3.6

guarantees

w′′

(1) −
3√lK (x)w′

(1) − lw(1) ≤ 0.

On ∂Ω1 ∩ Ω2, α(1) ≥ α( 12 )
= α(0) and on ∂Ω2 ∩ Ω1, α(1) = α( 12 )

by definition. Hence w(1) ≥ 0 or α(1) − α( 12 )
≥ 0 on ∂Ω12.

Lemma 2.4 then guarantees that α(1) ≥ α( 12 )
on Ω12. We also have α(1) = α( 12 )

by definition on Ω \ Ω2. Lemma 3.4 ensures
α(1) ≥ α(0) on Ω \Ω1 but α( 12 )

= α(0) on Ω \Ω1, hence α(1) ≥ α( 12 )
on Ω \Ω1 and so we have α(1) ≥ α( 12 )

on Ω . Furthermore,

note that the difference w(1) satisfies (2.3) with a non-positive right hand side and non-negative boundary conditions.
Since w( 12 )

≥ 0 on Ω12 then Lemma 3.6 with n =
3
2 gives

w′′

( 32 )
−

3√lK (x)w′

( 32 )
− lw( 32 )

≤ (M − l)w( 12 )
+ (N sign (w′

( 12 )
) −

3√lK (x))w′

( 12 )
. (3.13)

Recall that w( 12 )
is the solution of (3.8) with non-negative boundary conditions and hence by Lemma 2.7 the right hand

side of the above inequality is non-positive. We conclude from Eq. (3.13) that

w′′

( 32 )
−

3√lK (x)w′

( 32 )
− lw( 32 )

≤ 0.

On ∂Ω1 ∩ Ω2, α( 32 )
= α(1) and on ∂Ω2 ∩ Ω1 α( 32 )

≥ α( 12 )
= α(1). This implies that w1 = α( 32 )

− α(1) ≥ 0 on ∂Ω12.

Hence by Lemma 2.4 we know α( 32 )
≥ α(1) on Ω12. Furthermore, by definition α( 32 )

= α(1) on Ω \ Ω1 and by Lemma 3.4
α( 32 )

≥ α( 12 )
= α(1) on Ω \ Ω2. Therefore, α( 32 )

≥ α(1) on Ω . Note again, the difference w( 32 )
satisfies a BVP of the form (2.3)

with a non-positive right hand side and non-negative boundary conditions.
Having established the base case, now assume that on Ω

α(k+ 1
2 )

≤ α(k+1) ≤ α(k+ 3
2 )

, (3.14)

for k = 0, 1, . . . , n − 1. In addition, assume that the differences w(k+ 3
2 )

= α(k+ 3
2 )

− α(k+1) and w(k+1) = α(k+1) − α(k+ 1
2 )
, for

k = 0, 1, . . . , n − 1, satisfy BVP (2.3) with a non-positive right hand side and with non-negative boundary conditions. We
will prove (3.14) holds for k = n or that

α(n+ 1
2 )

≤ α(n+1) ≤ α(n+ 3
2 )

.

From the induction hypothesis, w(n) ≥ 0 on Ω12. Lemma 3.6 then ensures

w′′

(n+1) −
3√lK (x)w′

(n+1) − lw(n+1) ≤ (M − l)w(n) + (Nsign(w′

(n)) −
3√lK (x))w′

(n).

The induction hypothesis ensures thatw(n) satisfies BVP (2.3)with a non-positive right hand side and non-negative boundary
conditions on ∂Ω12. By Lemma 2.7 we conclude that

w′′

(n+1) −
3√lK (x)w′

(n+1) − lw(n+1) ≤ 0.

On ∂Ω1 ∩ Ω2, α(n+1) ≥ α(n) = α(n+ 1
2 )

(the inequality follows from Lemma 3.4 and equality from the enforced boundary
condition), while on ∂Ω2 ∩ Ω1 α(n+1) = α(n+ 1

2 )
by definition. This implies α(n+1) − α(n+ 1

2 )
≥ 0 on ∂Ω12. Hence by Lemma 2.4

we conclude that α(n+1) ≥ α(n+ 1
2 )

onΩ12. We have α(n+1) = α(n+ 1
2 )

by definition onΩ \Ω2. Lemma 3.4 ensures α(n+1) ≥ α(n)

on Ω \ Ω1 but α(n+ 1
2 )

= α(n) on Ω \ Ω1. Hence α(n+1) ≥ α(n+ 1
2 )

on Ω .

The non-negativity of w(n+ 3
2 )
, given the induction hypothesis, follows similarly and the details are omitted. ■

We now complete the required inequalities by showing that the sequence is bounded above by the supersolution.
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Lemma 3.8. Assume α(n+ 1
2 )

and α(n+1) are the sequences defined by (3.1) and (3.2) respectively, subject to conditions [C1]–[C3]

and [C5], and l is sufficiently large so that Assumption 1 holds. Then for all n = 0, 1, . . .,

α ≤ α(n) ≤ α(n+ 1
2 )

≤ α(n+1) ≤ α(n+ 3
2 )

≤ β̄ on Ω. (3.15)

Proof. In Lemma 3.4 we have proved that α(n+ 1
2 )

and α(n) are monotonically increasing from subsolution α in Ω , so these
sequences are bounded below by α in Ω .

Define

h(n) := f (x, β̄, β̄ ′) − f (x, α(n), α
′

(n)) −
3√lK (x)(β̄ ′

− α′

(n)) − l(β̄ − α(n))

and define h(n+ 1
2 )

as above in the obviousway. Herewe use induction to show that for all n = 0, 1, . . . , α(n) ≤ β̄ , α(n+ 1
2 )

≤ β̄ ,
h(n) ≤ 0 and h(n+ 1

2 )
≤ 0.

Since α(0) = α, then α(0) ≤ β̄ follows from Lemma 2.6. From (3.1), for n = 0, we have

− α′′

( 12 )
+

3√lK (x)α′

( 12 )
+ lα( 12 )

= − f (x, α, α′)

+
3√lK (x)α′

+ lα, (3.16)

as α(− 1
2 )

= α(0) = α. From the definition of a supersolution we have β̄ ′′
≤ f (x, β̄, β̄ ′). Adding −

3√lK (x)β̄ ′
− lβ̄ on both sides

of this inequality and rearranging, we have

− β̄ ′′
+

3√lK (x)β̄ ′
+ lβ̄ ≥ −f (x, β̄, β̄ ′) +

3√lK (x)β̄ ′
+ lβ̄. (3.17)

Now subtracting (3.16) from (3.17) and rearranging, we find

− (β̄ ′′
− α′′

( 12 )
) +

3√lK (x)(β̄ ′
− α′

( 12 )
) + l(β̄ − α( 12 )

) ≥ f (x, α, α′) − f (x, β̄, β̄ ′)+

+
3√lK (x)(β̄ ′

− α′

(0)) + l(β̄ − α(0)). (3.18)

The requirement α( 12 )
≤ β̄ on Ω1 now follows from (2.2) and Lemma 2.4. Since α(1/2) = α(0) ≤ β̄ on Ω̄ \ Ω̄1 then α(1/2) ≤ β̄

on Ω̄ . The relation (2.2) also gives us h(0) ≤ 0, while h( 12 )
≤ 0 follows from (3.18), Lemma 2.7, conditions [C2] and [C3].

Relation (3.18) is satisfied with α(1/2) replaced by α(1) on Ω2. Hence α(1) ≤ β̄ from (2.2) and Lemma 2.4 since β̄ − α(1) =

β̄ − α(1/2) ≥ 0 on ∂Ω2.
Assume that for some n, α(n+ 1

2 )
≤ β̄ , h(n+ 1

2 )
≤ 0 onΩ and also α(n+1) ≤ β̄ , h(n+1) ≤ 0 onΩ . Wewill prove that α(n+ 3

2 )
≤ β̄

and h(n+ 3
2 )

≤ 0 and also α(n+2) ≤ β̄ and h(n+2) ≤ 0.

Subtracting the equation for α(n+ 3
2 )

from (3.17) we get

− (β̄ ′′
− α′′

(n+ 3
2 )
)+ 3√lK (x)(β̄ ′

− α′

(n+ 3
2 )
) + l(β̄ − α(n+ 3

2 )
) = −f (x, β̄, β̄ ′)+

f (x, α(n+ 1
2 )

, α′

(n+ 1
2 )
) +

3√lK (x)(β̄ ′
− α′

(n+ 1
2 )
) + l(β̄ − α(n+ 1

2 )
).

The right hand side is simply −h(n+ 1
2 )
. Hence using the induction hypothesis and Lemma 2.7 we conclude α(n+ 1

2 )
≤ β̄ . The

requirement that h(n+3/2) ≤ 0 now follows upon using the conditions [C2] and [C3] and the inequality in Lemma 2.7. The
proof that α(n+1) ≤ β̄ and h(n+2) ≤ 0 is completely analogous. ■

In a similar way we can prove the following lemma.

Lemma 3.9. Assume β(n+ 1
2 )

and β(n+1) are the sequences defined by (3.3) and (3.4) respectively, subject to conditions [C1]–[C3]

and [C5], and l is sufficiently large so that Assumption 1 holds. Then for all n = 0, 1, . . . ,

β̄ ≥ β(n) ≥ β(n+ 1
2 )

≥ β(n+1) ≥ β(n+ 3
2 )

≥ α on Ω, (3.19)

where α is a subsolution and β̄ is a supersolution of (2.1).

The monotonicity and boundedness of the subdomain iterates guarantee the existence of pointwise limits. We conclude
this section by considering the regularity of these pointwise limits and showing that the subdomain iterates converge to
solutions of the model problem (2.1). Compared to the single domain case presented in [21], the analysis of the DD iteration
is complicated by the lack of explicit control over the derivatives of the subdomain solutions at the interior subdomain
boundaries.

We beginwith a lemma from Schmitt and Thompson [32] which provides an a priori bound on the derivative of solutions
of our subdomain problems.
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Lemma 3.10. Suppose u ∈ C2([a, b]) and there exists a positive number P so that ∥u∥∞ ≤ P. Assume ∥u′′
∥∞ ≤ φ(∥u′

∥∞), where
φ(s) is a positive, nondecreasing, continuous real-valued function which satisfies

lim
s→∞

φ(s)
s2

= 0. (3.20)

Then there exists a constant Q so that φ(s)
s2

< 1
4P when s > Q . Furthermore, ∥u′

∥∞ ≤ M̄ where M̄ = max(Q , 8P).

Our right-hand side function f , satisfying conditions [C2] and [C3], satisfies a linear growth condition as shown in the
following lemma.

Lemma 3.11. Assume conditions [C1]–[C3] hold, then |f (x, u, v)| ≤ j(|v|) on the set D, where j(s) ≡ Ns + d for some constants
N and d.

Proof. The proof follows from condition [C3] which guarantees that

− N|u′
| − f (x, u, 0) ≤ f (x, u, u′) ≤ N|u′

| + f (x, u, 0).

The continuity of f for α ≤ u ≤ β̄ ensures that there exists a constant d > 0 such that |f (x, u, 0)| ≤ d. Hence we have

− N|u′
| − d ≤ f (x, u, u′) ≤ N|u′

| + d,

or |f (x, u, u′)| ≤ N|u′
| + d on D, from which the result follows. ■

Motivated by our iterations (3.1)–(3.2), and (3.3)–(3.4), we obtain the following result.

Lemma 3.12. Suppose u ∈ C2([a, b]) and η ∈ C1([a, b]), satisfy u, η ∈ [α, β̄]. Furthermore, assume u satisfies

u′′
= f (x, η, η′) + l(u − η) +

3√lK (x)(u′
− η′), (3.21)

and suppose

∥u′
∥∞ ≥ max(∥η′

∥∞, l).

Then there exists a M̄ such that ∥u′
∥∞ ≤ M̄.

Proof. Define R = max {∥α − β̄∥∞, ∥α∥∞, ∥β̄∥∞}. If ∥u′
∥∞ ≥ max(∥η′

∥∞, l) and u satisfies (3.21) then using the triangle
inequality and Lemma 3.11, we have ∥u′′

∥∞ ≤ φ(∥u′
∥∞) where

φ(s) = j(s) + Rs + 2s4/3∥K∥∞.

By assumption u is bounded (in L∞) and since

lim
s→∞

φ(s)
s2

= 0,

then by Lemma 3.10 there exists a constant M̄ (depending only on φ, K , α, and β̄ , but not η), such that ∥u′
∥∞ ≤ M̄ . ■

This allows us to the prove the following theorem.

Theorem 3.13. Let un denote the sequence of subdomain iterates defined in (3.1) and (3.2), or in (3.3) and (3.4), subject to
conditions [C1]–[C3] and [C5], and suppose l is sufficiently large so that Assumption 1 holds. Then the derivatives of the subdomain
iterates are uniformly bounded (in n). Specifically, we have

∥u′

n∥∞ ≤ max(∥u′

0∥∞, M̄, l), for all n = 0, 1, . . .

Proof. We proceed by induction. By Lemma 3.12 either ∥u′

1∥∞ ≤ max(∥u′

0∥∞, l) or ∥u′

1∥∞ ≤ M̄. In either case, ∥u′

1∥∞ ≤

max(∥u′

0∥∞, M̄, l). Assume ∥u′

n−1∥∞ ≤ max(∥u′

0∥∞, M̄, l). Then by Lemma 3.12 either ∥u′
n∥∞ ≤ max(∥u′

n−1∥∞, l) ≤

max(∥u′

0∥∞, M̄, l) or ∥u′
n∥∞ ≤ M̄. In either case, ∥u′

n∥∞ ≤ max(∥u′

0∥∞, M̄, l) as required. ■

We are now in a position to prove the first main result.

Theorem 3.14. Assume conditions [C1]–[C5] hold, and l is sufficiently large so that Assumption 1 holds. Then the alternating
Schwarz sequence α(n+ i

2 )
, defined in (3.1) and (3.2), converges to a solution, u, of (2.1) in C2(Ω̄i) for i = 1,2.

Proof. Themonotonicity and boundedness of the iterates on each subdomain, as demonstrated above if l is sufficiently large,
guarantee the point-wise limits α̂1 and α̂2 exist so that

lim
n→∞

α(n+1/2)(x) = α̂1(x) on Ω1 and lim
n→∞

α(n+1)(x) = α̂2(x) on Ω2.

We now show that α̂1 = α̂2 is a solution of (2.1) following the general regularity argument given in [33].
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Fig. 2. Domain decomposed intom subdomains.

Conditions [C1]–[C5] and the uniform boundedness of α(n−1/2) and α′

(n−1/2) (from Theorem 3.13) ensure the uniform
boundedness, in L∞, of the right hand side of the defining equation for α(n+1/2) in (3.1). This gives the uniform boundedness
of the right hand side of the defining equation for α(n+1/2) in Lp(Ω1) for p ≥ 1. Then Lemma 1.1 in Chapter 3 of Pao [33] gives
uniform boundedness of α(n+1/2) in W 2

p (Ω1). By choosing p > 1 so that µ = 1 − 1/p > 0 then the embedding estimate,
Lemma 1.2 in Chapter 3 of Pao [33], gives the uniform boundedness of α(n+1/2) in C1+µ(Ω̄1). The Hölder continuity of f then
implies that the right hand side of the defining equation for α(n+1/2) is uniformly bounded in Cµ(Ω̄1). The Schauder estimate,
Theorem 1.3 in Chapter 3 of Pao [33], then gives α(n+1/2) in C2+µ(Ω̄1). The Arzel–Ascoli theorem guarantees a subsequence
which converges, in C2, to a function ᾱ1. Since α(n+1/2) converges point-wise to α̂1 then ᾱ1 ≡ α̂1. The monotonicity of the
sequence then ensures the whole sequence α(n+1/2) converges, in C2(Ω̄1) to α̂1. Likewise α(n+1) converges to α̂2, in C2(Ω̄2).

Passing to the limit in the inequalities (3.15) we must have α̂1 = α̂2 on Ω̄ . Now, define u = α̂1. Then u solves (2.1) on
Ω̄ . ■

Similarly we can prove the following theorem.

Theorem 3.15. Assume conditions [C1]–[C5] hold and l is sufficiently large so that Assumption 1 holds. Then the alternating
Schwarz sequence {β(n+ i

2 )
}, defined in (3.3) and (3.4), converges to a solution of (2.1) in C2(Ω̄i) for i = 1,2.

If the BVP has a unique solution then sequence of subsolutions and supersolutions both converge to the unique solution.
We note that in [21], C1 convergence is obtained on a single domain by omitting the stronger Hölder continuity requirement
[C4].

3.2. Alternating linear Schwarz on multiple subdomains

Now suppose the domain is decomposed intom overlapping subdomains as shown in Fig. 2. For a given subsolutionα, and
initial subdomain solutions α(0,i) = α, i = 1, . . . ,m, the iteration scheme proceeds as: for n = 0, 1, 2, . . . , for i = 1, . . . ,m,
solve on Ωi

α′′

(n+1,i) −
3√lK (x)α′

(n+1,i) − lα(n+1,i) = f (x, α(n,i), α
′

(n,i)) −
3√lK (x)α′

(n,i) − lα(n,i), (3.22)
α(n+1,i)(si) = α(n+1,i−1)(si) and α(n+1,i)(ti) = α(n,i+1)(ti).

For purposes of consistency, we define α(n+1,0)(s1) = α(n,m+1)(tm) = 0. Outside of Ωi we define α(n+1,i) = α(n+1,k) for k < i
and α(n+1,i) = α(n,k) for k > i.

Similarly for a given supersolution β̄ , and initial subdomain solutions β(0,i), i = 1, . . . ,m, we consider the iteration
scheme: for n = 0, 1, 2, . . . , for i = 1, . . . ,m, solve on Ωi

β ′′

(n+1,i) −
3√lK (x)β ′

(n+1,i) − lβ(n+1,i) = f (x, β(n,i), β
′

(n,i)) −
3√lK (x)β ′

(n,i) − lα(n,i), (3.23)
β(n+1,i)(si) = β(n+1,i−1)(si) and β(n+1,i)(ti) = β(n,i+1)(ti).

Again, for consistency, we define β(n+1,0) = β(n,m+1) = 0. Outside of Ωi we define β(n+1,i) = β(n+1,k) for k < i and
β(n+1,i) = β(n,k) for k > i.

Theorem 3.16. Assume conditions [C1]–[C5] hold and l is sufficiently large so that Assumption 1 holds. Then the alternating
Schwarz sequence defined in (3.22), converges from a subsolution to a solution, u, of (2.1) in C2(Ω̄i) for i = 1, . . . ,m.

Proof. Proceeding as in Section 3.1, we may show by induction that the sequence α(n,i), for n = 0, 1, . . . and i = 1, . . . ,m,
defined by (3.22), satisfies the inequalities

α ≤ α(n,1) ≤ α(n,2) ≤ . . . ≤ α(n,i) ≤ α(n,i+1)

≤ . . . ≤ α(n,m) ≤ α(n+1,1) ≤ α(n+1,2) ≤ · · · ≤ α(n+1,m) ≤ β̄ on Ω. (3.24)

As in the proof of Theorem 3.14, the monotonicity and boundedness of the subdomain solutions give the existence of
point-wise limits on each subdomain. Repeating the elliptic regularity argument given in the proof of Theorem 3.14 gives
convergence of α(n,i) to a solution u of (2.1) on Ω̄i. ■

Similarly we obtain convergence starting from a supersolution.
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Theorem 3.17. Assume conditions [C1]–[C5] hold and l is sufficiently large so that Assumption 1 holds. Then the alternating
Schwarz sequence defined in (3.23), converges from a supersolution to a solution, u, of (2.1) in C2(Ω̄i) for i = 1, . . . ,m.

3.3. Parallel linear Schwarz on multiple subdomains

The following Schwarz variant allows a parallel implementation, as them subdomain solves per iteration are completely
independent.

For a given subsolution α, and initial subdomain solutions α(0,i) = α, i = 1, . . . ,m, the iteration scheme proceeds as: for
n = 0, 1, 2, . . . , for i = 1, . . . ,m, solve on Ωi

α′′

(n+1,i) −
3√lK (x)α′

(n+1,i) − lα(n+1,i) = f (x, α(n,i), α
′

(n,i)) −
3√lK (x)α′

(n,i) − lα(n,i), (3.25)

α(n+1,i) = α(n) on ∂Ωi, α(n+1,i) = α(n) on Ω̄ \ Ω̄i andα(n)(x) = max
1≤i≤m

α(n,i)(x), x ∈ Ω̄.

Similarly for a given supersolution β̄ , and initial subdomain solutions β(0,i), i = 1, . . . ,m, we consider the iteration
scheme: for n = 0, 1, 2, . . . , for i = 1, . . . ,m, solve on Ωi

β ′′

(n+1,i) −
3√lK (x)β ′

(n+1,i) − lβ(n+1,i) = f (x, β(n,i), β
′

(n,i)) −
3√lK (x)β ′

(n,i) − lα(n,i), (3.26)

β(n+1,i) = β(n) on ∂Ωi, β(n+1,i) = β(n) on Ω̄ \ Ω̄i andβ(n)(x) = min
1≤i≤m

β(n,i)(x), x ∈ Ω̄.

Theorem 3.18. Assume conditions [C1]–[C5] hold and l is sufficiently large so that Assumption 1 holds. Then the parallel Schwarz
sequence defined in (3.25), converges from a subsolution to a solution, u, of (2.1) in C2(Ω̄i) for i = 1, . . . ,m.

Proof. The definition of α(n), and induction arguments similar to those provided in Section 3.1, give the inequalities

α ≤ α(n,i) ≤ α(n+1,i) ≤ β̄ on Ω̄i. (3.27)

We also have

α ≤ α(n) ≤ α(n+1) ≤ β̄ on Ω̄.

This follows quickly from the inequalities (3.27) as α(n)(x) = α(n,i)(x) for some i, which implies

α(n)(x) = α(n,i)(x) ≤ α(n+1,i)(x) ≤ α(n+1)(x).

And finally we have

α(n) ≤ α(n+1,i) on Ω̄,

for i = 1, . . . ,m. This inequality is more delicate. Since α(n)(x) = max
1≤i≤m

α(n,i)(x) for x ∈ Ω̄ , then the inequality can be

established by showing that for each i, α(n+1,i) ≥ α(n,j) for j = 1, . . . ,m. The case j = i follows from (3.27) and holds
by the definition of α(n+1,i) for j such that Ωj ∩ Ωi = ∅. Hence, if i = 1 then we only have to consider j = 2, if i = m then we
only consider j = m − 1 and for all other i values we have to only consider j = i − 1 and j = i + 1.

As an example, suppose 1 < i < m and let j = i+ 1, then wemust show that on Ωi ∩ Ωj we have α(n+1,i) ≥ α(n,i+1) for all
n = 0, 1, . . .. The argument proceeds by induction. To show the base case we subtract the defining equations for α(1,i) and
α(0) and use the fact that α(0) is a subsolution and the maximum principle to conclude that α(1,i) ≥ α(0) in the overlap and
furthermore w = α(1,i) − α(0) satisfies (l − M)w + ( 3√lK − Nsign(w′))w′

≥ 0.
Now assume α(n−1)(x) ≤ α(n,i) on Ω̄ and w = α(n,i) − α(n−1,i+1) satisfies (l − M)w + ( 3√lK − Nsign(w′))w′

≥ 0 in the
overlap. We complete the proof by showing α(n+1,i) ≥ α(n,i+1) in the overlap region.

Subtracting the defining equations for α(n+1,i) and α(n,i+1) and using the induction hypothesis we find that w = α(n+1,i) −

α(n,i+1) satisfies w′′
−

3√lK (x)w′
− lw ≤ 0 in the overlap region. Also on the left boundary of the overlap we have

α(n+1,i) ≥ α(n,i) ≥ α(n−1) = α(n,i+1). This first inequality follows from (3.27) and the second from the induction hypothesis.
At the right boundary of the overlap we have α(n+1,i) = α(n,i+1) by definition. Hence Lemma 2.7 then guarantees w ≥ 0 in
overlap region. The argument for j = i − 1 proceeds similarly.

This gives the existence of point-wise limits α̂i and α̂0 so that

lim
n→∞

α(n,i)(x) = α̂i(x) and lim
n→∞

α(n)(x) = α̂0(x).

Repeating Pao’s argument we find that α̂i satisfies the differential equation on Ω̄i and the convergence is in the sense of
C2(Ω̄i). The above inequalities guarantee α̂i ≤ α̂0 on Ω̄ for i = 1, . . . ,m. Also for any j we have α̂0 ≤ α̂j ≤ α̂0 ≤ α̂i, hence
α̂i = α̂j = α̂0 for all i, j = 1, . . . ,m. This common function must be a solution of (2.1). ■

Similarly we obtain convergence starting from a supersolution.

Theorem 3.19. Assume conditions [C1]–[C5] hold and l is sufficiently large so that Assumption 1 holds. Then the parallel Schwarz
sequence defined in (3.26), converges from a supersolution to a solution, u, of (2.1) in C2(Ω̄i) for i = 1, . . . ,m.
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Fig. 3. Plot showing inequality (3.12) for BVP (4.1) for n = 9.

Fig. 4. Plot showing inequality (3.19) for BVP (4.1) for n = 9.

4. Numerical results

In this section, we provide some brief numerical results to illustrate the theory developed above.

Example 1. As a simple test example we consider the nonlinear BVP

u′′
= sin(u′) + 2 − sin(2x − 1), u(0) = 0, u(1) = 0, (4.1)

whose exact solution is given by u(x) = x2 − x. One is able to quickly check that the BVP satisfies the required regularity
conditions. Furthermore, one can explicitly check that the BVP has a subsolution α(x) =

5
2x(x − 1), and a supersolution is

β̄(x) = −
5
2x(x − 1), with u(x) ≤ ū(x).

In Fig. 3 we verify numerically the monotonicity properties indicated in inequality (3.12), for iterates starting from the
subsolution.

Similarly Fig. 4 shows that inequality (3.19) is satisfied when the iterates start from the supersolution.
Fig. 5 shows the numerical solution of BVP (4.1) using iterations (3.1) and (3.2) starting from the subsolution. The exact

solution of the BVP is plotted in the heavy thick black line.
Fig. 6 shows the numerical solution of BVP (4.1) using iterations (3.3) and (3.4) starting from the supersolution.
Indeed the convergence is monotonic as predicted by the theory. In Figs. 7 and 8we plot the log of the difference between

the exact solution and the subdomain iterates (at x = 1/4 for subdomain one on the left and at x = 3/4 for subdomain
two on the right). In both plots the difference decreases (notice the negative values on the vertical axis in Fig. 8). The
difference remains positive if we start the iteration from the subsolution and remains negative if we start the iteration
from the supersolution.

Fig. 9 shows the convergence history obtained using the alternating Schwarz iteration (3.22) on 2, 3, 4 and 5 subdomains.
As is well-known the convergence rate decreases as the number of subdomains increases.

Fig. 10 shows the convergence history obtained using the parallel Schwarz iterations (3.26) on 2, 3, 4 and 5 subdomains.

Example 2. As an another example we consider the viscous steady state Burgers’ equation with a viscosity of 1. The BVP is
given by

uxx = uux, u(0) = 1, u(1) = −1.
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Fig. 5. Linearized DD iterations starting from the subsolution for BVP (4.1).

Fig. 6. Linearized DD iterations starting from the supersolution for BVP (4.1).

Fig. 7. Monotonicity of the iterates starting from subsolution for BVP (4.1).

A change of variables to obtain zero boundary conditions gives the equivalent BVP

vxx = (v − 2x + 1)(vx − 2), v(0) = v(1) = 0. (4.2)

It is easy to verify that α = γ x(1 − x) with γ ≥ 2/3 is a supersolution for this problem, while β̄ = γ x(1 − x) is a
subsolution if γ ≤ −2/3. It should be noted that generalizing to find subsolutions and supersolutions which satisfy the
boundary conditions (as required by the theory) for an arbitrary viscosity for this example is not trivial. This highlights one
shortcoming of this approach. Furthermore, this example does not satisfy condition [C2] on the right hand side function f
as required by the proof of the theorem. In spite of this, we can indeed generate a monotonically convergent sequence of
functions for this example as the numerics illustrate in Figs. 11 and 12. In this case the mild nonlinearity in vx suggests that
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Fig. 8. Monotonicity of the iterates starting from supersolution for BVP (4.1).

Fig. 9. Convergence history for the linearized alternating Schwarz algorithm for (4.1) on 2, 3, 4 and 5 subdomains.

Fig. 10. Convergence history for the linearized parallel Schwarz algorithm for (4.1) on 2, 3, 4 and 5 subdomains.

the problem satisfies a Nagumo condition, allowing us to get a priori C1 estimates on the solutions of the modified problem,
and to recover the monotone convergence of the iteration. Further work in this direction is ongoing.
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Fig. 11. Linearized DD iterations starting from the subsolution for BVP (4.2).

Fig. 12. Linearized DD iterations starting from the supersolution for BVP (4.2).

5. Conclusion and summary

In this paperwe have proposed and analyzedmultiplicative and parallel, linearized Schwarz iterations for boundary value
problems which depend nonlinearly on the derivative of the unknown solution, subject to Dirichlet boundary conditions.
Our work extends the single domain monotone schemes proposed by Cherpion [21] for these problems to a solution on
multiple subdomains and also extends the linearized Schwarz iterations analyzed by Lui for problems without explicit u′

dependence.
The proposed approach is not without its issues — the monotone scheme for this Dirichlet problem relies on the

generation of a subsolution or a supersolution which satisfies the boundary conditions. This is not trivial, and may be as
difficult as obtaining an initial solution within the basin of attraction for Newton’s method. The conditions on f stated here
can be relaxed as our last example illustrates. Attempts to relax the restrictions imposed on the growth of the right hand
side function with respect to u′ and extensions to PDE problems with gradient dependence are underway.
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