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1 Introduction

There are many occasions when the use of a uniform spatial grid would be pro-
hibitively expensive for the numerical solution of partial differential equations
(PDEs). In such situations, a popular strategy is to generate an adaptive mesh by
either varying the number of mesh points, the order of the numerical method, or the
location of mesh points throughout the domain, in order to best resolve the solution.
It is the latter of these options, known as moving mesh methods, which are our focus.
In this case the physical PDE of interest is coupled with equations which adjust the
position of mesh points to best “equidistribute” a particular measure of numerical
error. This coupled system of equations is solved to generate the solution and the
corresponding mesh simultaneously, see [7] for a recent overview.

A simple method for adaptive grid generation in two spatial dimensions is out-
lined in [8] by Huang and Sloan, in which a finite difference two dimensional adap-
tive mesh method is developed by applying a variation of de Boor’s equidistribution
principle (EP) [1, 2]. The equidistribution principle states that an appropriately cho-
sen mesh should equally distribute some measure of the solution variation or com-
putational error over the entire domain. Mackenzie [9] extends upon the work of
[8] by presenting a finite volume discretization of the mesh equations, as well as an
efficient iterative approach for solving these equations, referred to as “an alternating
line Gauss-Seidel relaxation approach”.

In this paper, we propose a parallel domain decomposition (DD) solution of the
2D adaptive method of [8]. In Section 2 we review the derivation of the mesh PDEs
of [8] and discuss possible boundary conditions. In Sections 3 and 4 we present
classical and optimized Schwarz methods for the generation of 2D equidistributed
meshes, and in Section 5 we describe the numerical implementation of this approach
and provide numerical results.

2 2D Mesh Generation

To begin, we review the derivation of the equations which govern mesh equidistri-
bution in two spatial dimensions from [8], defining a mesh in the physical variables
(x,y) which best resolves a given function u(x,y). Let x = [x,y]T be the spatial coor-
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dinates of a mesh in a 2D physical domain, Ωp. We introduce the coordinate trans-
formation x = x(ξξξ ), where ξξξ = [ξ ,η ]T denotes the spatial coordinates on the com-
putational domain, Ωc = [0,1]× [0,1]. Here we determine a mesh which equidis-
tributes the arc-length of u(x,y) over Ωp. The scaled arc-length measurement of
variation of u along the arc element from x to x+dx can be expressed as

ds = [α2(du)2 +dxT x]1/2 = [dxTMMMdx]1/2, (1)

where MMM = α2∇∇∇u ·∇∇∇uT + III. Making use of the mesh transformation x = x(ξξξ ), (1)
can be expressed as

ds = [dξξξ
T JJJT MMMJJJ dξξξ ]1/2, (2)

where JJJ is the Jacobian of the transformation.
The equidistribution principle follows from (2): if u(x(ξξξ )) is to have the same

value ds along any arc element in the computational domain with fixed length
[dξξξ T dξξξ ]1/2, then (2) must be independent of the coordinate ξξξ . This implies that
JJJTMMMJJJ should be independent of ξξξ , or

[dξξξ
T JJJT MMMJJJ dξξξ ]1/2 = [dξξξ

T M̃̃M̃M dξξξ ]1/2, (3)

where M̃̃M̃M is a constant and hence ξξξ -independent matrix. If a coordinate transforma-
tion can be found which satisfies (3), u will have the same variation at any point in
Ωp along any arc of length[(

∂x
∂ξ

dξ + ∂x
∂η

dη

)T (
∂x
∂ξ

dξ + ∂x
∂η

dη

)]1/2

.

A transformation satisfying (3) for some matrix M̃̃M̃M will be called an equidistribution,
and (3) an equidistribution principle.

Usually (3) cannot be satisfied by the coordinate transformation on the whole
computational domain. However, if (3) is weakened so that the transformation is
only required to satisfy (3) locally; that is, we only require M̃̃M̃M to be constant along a
given coordinate line, it is possible to find a local equidistribution on Ωp. In 2D this
leads to the system:( ∂x

∂ξ

∂y
∂ξ

c

)T

MMM

(
∂x
∂ξ

∂y
∂ξ

)1/2

= c1(η),

( ∂x
∂η

∂y
∂η

)T

MMM

(
∂x
∂η

∂y
∂η

)1/2

= c2(ξ ). (4)

In practice, instead of the scaled arc-length matrix M previously mentioned, we
modify MMM as

MMM =
α2∇∇∇u ·∇∇∇uT

1+β∇∇∇uT∇∇∇u
+III.

The parameter β ≥ 0 is used to prevent problems where extremely small mesh spac-
ing or mesh tangling could occur, that is when |∇∇∇u| is very large.
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System (4) will determine the internal mesh points. In [8] a combination of
Dirichlet and Neumann conditions are used along ∂Ωc:

x(0,η) = y(ξ ,0) = 0, x(1,η) = y(ξ ,1) = 1, (5)
∂x
∂η

(ξ ,0) =
∂x
∂η

(ξ ,1) =
∂y
∂ξ

(0,η) =
∂y
∂ξ

(1,η) = 0, (6)

where ξ ,η ∈ [0,1]. The Dirichlet conditions are consistent with the requirement that
there are mesh points on the boundary of the domain. The Neumann orthogonality
conditions are arbitrary, and in fact can cause smoothness issues near the domain
boundaries. As an alternative, we follow [9] and apply the 1D EP,

(M(x)xξ )ξ = 0, x(0) = 0, x(1) = 1, (7)

to determine x(ξ ,0), x(ξ ,1), y(0,η) and y(1,η). The 1D analog of the system (4),
given in (7), has previously been solved by DD methods in [3, 5, 6].

3 Classical Schwarz Domain Decomposition

For the two dimensional mesh adaptation problem, the computational domain
Ωc = [0,1]× [0,1], can either be decomposed in just the ξ or just the η directions, or
in both directions. This results in “strip” or “block” configurations of subdomains
respectively. Here we discuss DD applied in the ξ direction only. That is, we de-
compose the ξ interval [0,1] into subintervals [α i

ξ
,β i

ξ
], i = 1, . . . ,S, where α1

ξ
= 0,

β S
ξ
= 1, and we assume the subintervals satisfy the overlap conditions:

α
i
ξ
< α

i+1
ξ

< β
i
ξ
< β

i+1
ξ

.

The resulting decomposition has S subdomains, denoted by Ωi = [α i
ξ
,β i

ξ
]× [0,1] for

i = 1, . . . ,S. The boundary conditions (5–6) or (7) are used along the ends of each
strip and transmission conditions are specified along the newly created interfaces.

Consider the 2D adaptive mesh system, (4), for the S = 2 case. We split Ωc into
subdomains Ω1 and Ω2 as in Figure 1. Let xn

i denote the subdomain solution on Ωi,
for i = 1,2. We consider the following DD iteration: for n = 1,2, . . ., solve ∂xn

i
∂ξ

∂yn
i

∂ξ

T

MMM(xn
i ,y

n
i )

 ∂xn
i

∂ξ

∂yn
i

∂ξ

1/2

= c1(η), (8)

 ∂xn
i

∂η

∂yn
i

∂η

T

MMM(xn
i ,y

n
i )

 ∂xn
i

∂η

∂yn
i

∂η

1/2

= c2(ξ ), (9)
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for i = 1,2 and ξξξ ∈Ωi. The classical Schwarz iteration uses the transmission condi-
tions

xn
1(β ,η) = xn−1

2 (β ,η), yn
1(β ,η) = yn−1

2 (β ,η), (10)

xn
2(α,η) = xn−1

1 (α,η), yn
2(α,η) = yn−1

1 (α,η). (11)

On ∂ (Ωc ∩Ωi) the boundary conditions (5) are used, along with the 1D EP to de-
termine x(ξ ,0), x(ξ ,1), y(0,η) and y(1,η).

ξ

η

α β0 1

1

Ω1 Ω2

Fig. 1 DD in ξ using in 2 subdomains.

Each DD iteration requires a pair of
PDEs to be solved, each a “smaller”
version of the local EP (4). These prob-
lems are solved in an iterative manner:
given initial approximations to be used
along interfaces, the PDEs (8–9) are
solved, and then solution information
along the interfaces is exchanged be-
tween subdomains. The PDEs are then
solved again, now with updated bound-
ary data, and the process repeats. By
iterating, the subdomain solutions con-
verge to the desired solution x on their
respective subdomains. As is well known, classical Schwarz requires the subdo-
mains to overlap [4].

4 Optimized Boundary Conditions

Classical Schwarz is known to converge slowly. As a way to remedy this, we pro-
pose the use of higher order, Robin type, transmission conditions along the ar-
tificial interfaces. As before, we decompose Ωc = [0,1]× [0,1] into subdomains
Ω1 = [0,β ]× [0,1] and Ω2 = [α,1]× [0,1], where α ≤ β .

We define, for any differentiable functions x(ξ ,η) and y(ξ ,η), the operators

B1(x) = xξ + px, B2(x) = xξ − px,

B3(x,y) = S1(x,y)+ px, B4(x,y) = S1(x,y)− px,

where

S1(x,y) =

√(
xξ

yξ

)T

M
(

xξ

yξ

)
, M =

α2w ·wT

1+βwT ·w
+ I

and
w =

1
xξ yη − xη yξ

[
uξ yη −uη yξ ,−uξ xη +uη xξ

]T
.
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We propose two possible sets of transmission conditions. The first are simple linear
Robin conditions using the derivative normal to the artificial boundaries:

B1(xn
1(β ,η)) = B1(xn−1

2 (β ,η)), B1(yn
1(β ,η)) = B1(yn−1

2 (β ,η))

B2(xn
2(α,η)) = B2(xn−1

1 (α,η)), B2(yn
2(α,η)) = B2(yn−1

1 (α,η)).
(12)

The second set are of nonlinear Robin type, similar to those used in an optimized
Schwarz algorithm for 1D mesh generation in [3]. We replace the x equations of
(12) by:

B3(xn
1(β ,η),yn

1(β ,η)) = B3(xn−1
2 (β ,η)yn−1

2 (β ,η))

B4(xn
2(α,η),yn

2(α,η)) = B4(xn−1
1 (α,η),yn−1

1 (α,η)).
(13)

Note, the mesh PDE (8) indicates that the nonlinear term S1 in the operator B3
is constant across the ξ = α and ξ = β interfaces. Furthermore, as the system of
equations resulting from (8-9) are already nonlinear, the nonlinear transmission con-
ditions will not have a large impact on the cost of solving the system.

5 Numerical Implementation and Results

The local EP (4), the physical boundary conditions on Ωc, and the transmission
conditions (10, 11), (12) or (13), are discretized using standard finite differences on
a uniform grid in the computational (ξ ,η) variables. Second order centered differ-
ences are used, using the ghost value technique as needed at the boundaries to ensure
the scheme is second order. The nonlinear transmission conditions require nonlin-
ear, rather than linear, equations to be solved at the interface. This is not onerous as
the whole system is solved with a Newton iteration.

In the examples we use the test function u(x,y) =
[
1− e15(x−1)

]
sin(πy). The

function is shown, along with its locally equidistributed mesh, in Figures 2 and 3.
The physical mesh (x,y) is generated by solving (4) using a grid of 18× 18 uni-
formly spaced mesh points in Ωc. For this example, we use an optimized Schwarz
iteration, with transmission conditions (12), on 2 subdomains with 4 points of over-
lap in the ξ direction. We choose the parameters α = 0.7, β = 0.05 and p = 2.3.
The mesh on subdomain 1 is shown in red, on subdomain 2 in blue, and the over-
lap region in purple. In general, the meshes obtained by the different methods will
be visually indistinguishable from one another at convergence. To compare the DD
methods we will plot their convergence histories.

In Figure 4 we plot the maximum error between the subdomain and single do-
main solutions for each of xn

1, xn
2, yn

1, and yn
2 obtained using classical Schwarz. These

are obtained over a 12 by 12 grid with 4 points of overlap in ξ and parameters
α = 0.7 and β = 0.05. As can be seen, each component of the solution converges
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Fig. 2 Adaptive mesh generated for the test
function.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y(ξ, η)
x(ξ, η)

Fig. 3 The test function plotted using an adap-
tive mesh.

at approximately the same rate, so we simplify our discussion by comparing the
convergence of only xn

1 in the remaining figures.
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Fig. 4 Classical Schwarz convergence histo-
ries for each part of the solution, xn

1,2 and yn
1,2.
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Fig. 5 Classical Schwarz convergence histo-
ries for varying amounts of overlap.

In Figure 5 we compare the classical Schwarz algorithm for varying amounts of
overlap, using 2, 4, 6 and 8 points of overlap in the ξ direction. As expected, the
rate of convergence improves as the overlap increases.

For the two possible optimized Schwarz iterations, we examine the effect of vary-
ing the parameter p in Figures 6 and 7. To generate these results we use a 12 by 12
mesh with two points of overlap in the ξ direction and parameters α = 0.7 and
β = 0.05. For both types of transmission conditions, the best performance observed
occurs for p = 2. Comparing the linear Robin condition (Figure 6) and nonlinear
Robin condition (Figure 7), we see that the convergence histories for a general p
are very similar. To examine these similarities, we plot the convergence histories
for both optimized iterations for p = 1,2,3 on the same set of axes in Figure 8. We
see that while the variations in this particular case are small, the nonlinear trans-
mission conditions consistently outperform the linear Robin conditions. This is also
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Fig. 6 Convergence histories for the Schwarz
iteration using linear Robin conditions for
varying p.
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Fig. 7 Convergence histories for the Schwarz
iteration using nonlinear Robin conditions for
varying p.

observed in the results of Figure 9, in which we plot convergence histories for all
three proposed DD algorithms. For this example we use a 12 by 12 mesh decom-
posed into two subdomains, with two points of overlap in ξ and parameters α = 0.7
and β = 0.05. In this example we see that both optimized Schwarz methods vastly
outperform classical Schwarz, with the nonlinear transmission conditions slightly
outperforming the linear Robin conditions.

1 2 3 4 5 6 7 8 9 10 11
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

DD Iterations

E
rr
o
r

 

 

Linear Robin, p = 1

Linear Robin, p = 2

Linear Robin, p = 3

Nonlinear Robin, p = 1

Nonlinear Robin, p = 2

Nonlinear Robin, p = 3

Fig. 8 Convergence histories for linear and
nonlinear Robin transmission conditions with
varying p.
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Fig. 9 Convergence histories for all three iter-
ations considered.

Another way to assess the meshes obtained from a DD iteration is to compute a
mesh quality measure. An equidistribution quality measure for each element K of
the grid, Qeq(K), is presented in [7]. The maximum of Qeq over all elements is 1 if
and only if the equidistribution condition is satisfied exactly. The larger the value of
maxKQeq(K) the farther the mesh is from equidistributing MMM. In Table 1 we compute
the maxKQeq(K) for the first five iterations of each proposed Schwarz algorithm.
The zero column gives the mesh quality measure for the initial uniform 12× 12
mesh and the ∞ column gives the mesh quality measure for the mesh obtained by
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solving system (4) over a single domain. Note, local equidistribution will not give
a value of 1 for the mesh quality measure. We see that the meshes obtained by the
optimized Schwarz algorithms rapidly give good meshes.

Table 1 Mesh quality measures for the grids obtained by the proposed Schwarz iterations.

Iterations 0 1 2 3 4 5 ∞

Classical 1.6375 1.3630 1.3629 1.3178 1.3136 1.2795 1.1979
Linear Robin 1.6375 2.0076 1.1979 1.1979 1.1979 1.1979 1.1979

Nonlinear Robin 1.6375 2.0114 1.1979 1.1979 1.1979 1.1979 1.1979

6 Conclusion

In summary, we have proposed three different Schwarz DD iterations for obtaining
2D adaptive meshes defined by a local equidistribution principle. The numerical
results show that the optimized methods provide a significant improvement over the
slow convergence of classical Schwarz, with the nonlinear transmission conditions
inspired by the work of [3] exhibiting the best results. Ongoing work includes the
theoretical analysis of these DD approaches for 2D mesh generation and coupling
the DD mesh generation with a DD solver for the physical PDE of interest.
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