
MPI–OpenMP algorithms for the parallel
space–time solution of Time Dependent PDEs

Ronald D. Haynes1 and Benjamin Ong2

1 Introduction

Modern high performance computers offer hundreds of thousands of processors that
can be leveraged, in parallel, to compute numerical solutions to time dependent par-
tial differential equations (PDEs). For grid-based solutions to these PDEs, domain
decomposition (DD) is often employed to add spatial parallelism [18].

Parallelism in the time variable is more difficult to exploit due to the inherent
causality. Recently, researchers have explored this issue as a means to improve
the scalability of existing parallel spatial solvers applied to time dependent prob-
lems. There are two general approaches to combining temporal parallelism with
spatial parallelism. The parareal method [10, 15, 14], a so-called “parallel across the
problem” approach, decomposes a time domain into smaller temporal subdomains.
Parareal alternates between applying a coarse (relatively fast) sequential solver to
compute an approximate (not very accurate) solution, and applying a fine (expen-
sive) solver on each temporal subdomain in parallel. Alternatively, one can consider
“parallel across the step” methods. Examples of such approaches include the com-
putation of intermediate Runge–Kutta stage values in parallel [16], and Revisionist
Integral Deferred Correction (RIDC) methods, which are the family of parallel time
integrators considered in this paper.

This paper discusses the implementation details and profiling results of the paral-
lel space–time RIDC-DD algorithm described in [17]. Two hybrid OpenMP – MPI
frameworks are discussed: (i) a more traditional fork-join approach of combining
threads before doing MPI communications, and (ii) a threaded MPI communications
framework. The latter framework is highly desirable because existing (spatially par-
allel) legacy software can be easily integrated with the parallel time integrator. Nu-
merical experiments measure the communication overhead of both frameworks, and
demonstrate that the fork-join approach scales well in space and time. Our results
indicate that one should strongly consider temporal parallelization for the solution
of time dependent PDEs.

2 Review

The authors are interested in the general class of PDEs

Memorial University of Newfoundland, St. John’s, Newfoundland, Canada rhaynes@mun.ca ·
Michigan State University, Institute for Cyber-Enabled Research, e-mail: ongbw@msu.edu

1

2 Ronald D. Haynes and Benjamin Ong

ut = f (t,u)+∆u, x ∈Ω ⊂ R3, u(x,0) = u0(x), u(z, t) specified, z ∈ ∂Ω .

A common semi–implicit time discretization involves treating the diffusion term im-
plicitly and the nonlinearity f (t,u) explicitly. Therefore, without loss of generality,
we describe the application of our method to the linear heat equation in one spatial
dimension x ∈ [0,1] and t ∈ [0,T],

ut = uxx, u(t,0) = g0(t), u(t,1) = g1(t), u(0,x) = u0(x). (1)

The actual numerical results in §4 are presented for the 2D heat equation.

2.1 RIDC

RIDC methods [5, 6] are a family of parallel time integrators that can be broadly
classified as predictor corrector algorithms [9, 2]. The basic idea is to simultaneously
compute solutions to the PDE of interest and associated error PDEs using a low
order time integrator. We first review the derivation of the error equation.

Suppose v(t,x) is an approximate solution to (1), and u(t,x) is the (unknown)
exact solution. The error in the approximate solution is e(t,x) = u(t,x)−v(t,x). We
define the residual as ε(t,x) = vt(t,x)− vxx(t,x). Then the time derivative of the
error satisfies et = ut − vt = uxx− (vxx + ε). The integral form of the error equation,[

e+
∫ t

0
ε(τ,x)dτ

]
t
= (v+ e)xx− vxx, (2)

can then be solved for e(t,x) using the initial condition e(0,x) = 0. The correction
e(t,x) is combined with the approximate solution v(t,x) to form an improved so-
lution. This improved solution can be fed back in to the error equation (2) and the
process repeated until a sufficiently accurate solution is obtained. It has been shown
that each application of the error equation improves the order of the overall method,
provided the integral is approximated with sufficient accuracy using quadrature [7].

We introduce some notation to identify the sequence of corrected approxima-
tions. We use v[0](t,x) to denote the initial approximate solution obtained by solv-
ing the physical PDE (1) using a low order integrator. The approximate solution
v[0](t,x) has an error e[0](t,x) that is approximated by solving equation (2). The first
corrected solution, v[1](t,x), satisfies v[1](t,x) = v[0](t,x)+ e[0](t,x). In general, the
error from the pth correction equation is used to construct the (p+1)st approxima-
tion, v[p+1](t,x) = v[p](t,x)+ e[p](t,x). Hence, equation (2) can be expressed as[

v[p+1]−
∫ t

0
v[p]xx (τ,x)dτ

]
t
= v[p+1]

xx − v[p]xx . (3)

We compute a low order prediction, v[0],n+1, for the solution of (1) at time tn+1
using a first order backward Euler discretization (in time):

MPI–OpenMP parallel space–time method 3

v[0],n+1−∆ t v[0],n+1
xx = v[0],n, v[0],n+1(a) = g0(tn+1), v[0],n+1(b) = g1(tn+1), (4)

with v[0],0(x) = u0(x). With some algebra, a first order backward Euler discretization
of equation (3) gives the update, v[p+1],n+1, as

v[p+1],n+1−∆ t v[p+1],n+1
xx = v[p+1],n−∆ t v[p],n+1

xx +
∫ tn+1

tn
v[p]xx (τ,x)dτ, (5)

with v[p+1],n+1(a) = g0(tn+1) and v[p+1],n+1(b) = g1(tn+1). The integral in equa-
tion (5) is approximated using a sufficiently high order quadrature rule [7].

Parallelism in time is possible because the PDE of interest (4) and the error
PDEs (5) can be solved simultaneously, after initial startup costs. The idea is to
fill out the memory footprint, Figure 1, before marching solutions to (4) and (5) in
a pipe–line fashion, see [5] for more details.

b b

b b b

b b b b

b

bc

bc

bc

bc

Original PDE for v[0](t, x)

Error PDE for v[1](t, x)

Error PDE for v[2](t, x)

Error PDE for v[3](t, x)

1st correction

2nd correction

3rd correction

tn−3 tn−2 tn−1 tn tn+1.

Fig. 1 The black dots represent the memory footprint that must be stored before the white dots can
be computed in a pipe. In this figure, v[0],n+2(x), v[1],n+1(x), v[2],n(x) and v[3],n−1(x) are computed
simultaneously.

2.2 RIDC–DD

The RIDC–DD algorithm solves the predictor (4) and corrections (5) using DD al-
gorithms in space. The key observation is that (4) and (5) are both elliptic PDEs of
the form (1−∆ t ∂xx)z = f (x). The function f (x) is known from the solution at the
previous time step and previously computed lower order approximations. DD algo-
rithms for solving elliptic PDEs are well known [3, 4]. The general idea is to replace
the PDE by a coupled system of PDEs over some partitioning of the spatial domain
using overlapping or non–overlapping subdomains. The coupling is provided by
necessary transmission conditions at the subdomain boundaries. These transmission
conditions are chosen to ensure the DD algorithm converges and to optimize the
convergence rate. In [17], as a proof of principle, (4-5) are solved using a classi-
cal parallel Schwarz algorithm, with overlapping subdomains and Dirichlet trans-
mission conditions. Optimized RIDC–DD variants are possible using an optimized
Schwarz DD method [12, 11, 8], to solve (4-5). The solution from the previous

4 Ronald D. Haynes and Benjamin Ong

time step can be used as initial subdomain solutions at the interfaces. We will use
RIDCp–DD to refer to a pth order solution obtained using p−1 RIDC corrections
in time and DD in space.

3 Implementation Details

We view the parallel time integrator reviewed in §2.1 as a simple yet powerful tool to
add further scalability to a legacy MPI or modern MPI–CUDA code, while improv-
ing the accuracy of numerical solution. The RIDC integrators benefit from access to
shared memory because solving the correction PDE (5) requires both the solution
from the previous time step and previously computed lower order subdomain solu-
tion. Consequently, we propose two MPI-OpenMP hybrid implementations which
map well to multi-core, multi-node compute resources. In the upcoming MPI 3.0
standard [1], shared memory access within the MPI library will provide alternative
implementations.

Implementation #1: The RIDC-DD algorithm can be implemented using a tra-
ditional fork join approach, as illustrated in Program 1. After boundary information
is exchanged, each MPI task spawns OpenMP threads to perform the linear solve.
The threads are merged back together before MPI communication is used to check
for convergence. The drawback to this fork-join implementation, is that the parallel
space-time algorithm becomes tightly integrated, making it difficult to leverage an
existing spatially parallel DD implementation.

MPI Initialization
...

for each time step
for each Schwarz iteration

MPI Comm (exchange boundary info)
OMP Parallel for each prediction/correction

linear solve
end parallel

MPI Comm (check for convergence)
end

end
...
MPI Finalize

Program 1: RIDC-DD implementation using a fork-join approach.

Implementation #2: To leverage an existing spatially parallel DD implemen-
tation, a non-traditional hybrid approach must be considered. By changing the or-
der of the loops, the Schwarz iterations for the prediction and the correction loops
can be evaluated independently of each other. This is realized by spawning indi-

MPI–OpenMP parallel space–time method 5

vidual OpenMP threads to solve the prediction and correction loops on each sub-
domain; the Schwarz iterations for the prediction/correction step run independently
of each other until convergence. This implementation (Program 2) has several con-
sequences: (i) a thread safe version of MPI supporting MPI THREAD MULTIPLE
is required. (ii) In addition, we required a thread-safe, thread-independent ver-
sion of MPI BARRIER, MPI BROADCAST and MPI GATHER. To achieve this, we
wrote our own wrapper library using the thread safe MPI SEND, MPI RECV and
MPI SENDRECV provided by (i).

MPI Initialization
...

for each time step
OMP Parallel for each prediction/correction level

for each Schwarz iteration
MPI Comm (exchange boundary info)
linear solve
MPI Comm (check for convergence)

end
end parallel

end
...
MPI Finalize

Program 2: RIDC-DD implementation using a non-traditional hybrid approach.

4 Numerical Experiments

We show first that RIDC-DD methods converge with the designed orders in space
and time. Then, we profile communication costs using TAU [13]. Finally, we show
strong scaling studies for the RIDC-DD algorithm. We compute solutions to the heat
equation in R2, where centered finite differences are used to approximate the second
derivative operator. Errors are computed using the known analytic solution. The
computations are performed on a Linux cluster at Michigan State University, where
nodes (consisting of two quad core Intel Westmere processors) are interconnected
using infiniband and a high speed Lustre file system.

4.1 Convergence Studies and Profile Analysis

In Figure 2, the convergence plots show that our classical Schwarz RIDC-DD algo-
rithm converges as expected in space and time. The Schwarz iterations are iterated

6 Ronald D. Haynes and Benjamin Ong

until a tolerance of 10−12 is reached for the predictors and correctors (which ex-
plains why the error in the fourth order approximation levels out as the time step
becomes small).

10
−4

10
−3

10
−210

−15

10
−10

10
−5

10
0

dt

||
e|

| ∞

slope = 1

slope = 4

Prediction
1 Correction
2 Corrections
3 Corrections

(a) Time Convergence (b) Space Convergence

Fig. 2 (a) Classical Schwarz RIDCp-DD algorithms, p = 1,2,3,4, converge to the reference so-
lution with the designed orders of accuracy. Here ∆x is fixed while ∆ t is varied. (b) Second order
convergence in space is demonstrated for the fourth order RIDC-DD algorithm. Here, ∆ t is fixed
while ∆x is varied.

The communication costs for our two implementations of RIDC4-DD are pro-
filed using TAU [13]. We see in Figure 3, communication costs are minimal for
implementation #1, and scales nicely as the number of nodes is increased, but the
communication cost is significant for implementation #2. In Figure 3(a,c), the do-
main is discretized into 180× 180 grid nodes, which are split into a 3× 3 config-
uration of subdomains. In Figure 3(b,d), the domain is discretized into 360× 360
grid nodes, which are split into a 6×6 configuration of subdomains. This keeps the
number of grid points per subdomain constant so that the computation time for the
matrix factorization and linear solve are the same.

(a) Implementation #1
3×3 domain

(b) Implementation #1
6×6 domain

(c) Implementation #2
3×3 domain

(d) Implementation #2
6×6 domain

Fig. 3 Profile of the RIDC4-DD algorithm using both implementations. Overhead and communi-
cation costs are reasonable for implementation #1, but are high for implementation #2.

MPI–OpenMP parallel space–time method 7

4.2 Characterizing Parallel Performance

A strong scaling study for the classical Schwarz RIDC4-DD algorithm is performed.
Due to the better communication profile, framework #1 was used. We fix ∆x =

1
180 , ∆y = 1

180 , ∆ t = 1
1000 , and TOL=10−12 (the Schwarz iteration tolerance). The

overlap region is varied to keep the total number of Schwarz iterations constant.
Table 1 summarizes the timing runs and observed speedup to a baseline solution.
The column label, Nx×Ny ·Nt , indicates parallelization using a Nx×Ny configuration
of subdomains and Nt threads to integrate in time. For example, 6×6 ·4 refers to four
threads to compute a fourth order approximation in time, where the spatial domain is
divided into a 6×6 configuration of sub-domains. A total of 6 ·6 ·4 = 144 cores are
used. The number of Schwarz iterations is reported, and the speedup is computed
by the ratio of the runtimes (as compared with the 2× 2 · 1 simulation). Speedup
is evident as the temporal or spatial parallelization is improved. The efficiency is
computed by taking the ratio between the speedup and the additional number of
cores used.

2×2 ·1 2×2 ·2 2×2 ·4 4×4 ·1 4×4 ·2 4×4 ·4 6×6 ·1 6×6 ·2 6×6 ·4
cores 4 8 16 16 32 64 36 72 144
walltime 1827 943 537 224 125 87 74 48 34
speedup 1.0 1.9 3.4 8.2 14.6 21.0 24.7 38.1 53.7
efficiency 1.00 0.97 0.85 2.04 1.83 1.31 2.74 2.11 1.49
Schwarz 6295 6295 6295 6295 6295 6295 6295 6295 6295

Table 1 Strong scaling study for a fourth order (in time) RIDC-DD algorithm. The ratio of the
overlap region to the size of the sub domain is held fixed.

The speedup from the spatial parallelization is unusually high. Further reflec-
tion reveals that one should not expect a linear decrease in computation time as the
number of subdomains is increased. This is because the number of unknowns (grid
points), m in each subdomain, decreases linearly with the number of subdomains,
but, the cost for the linear solve scales as O(m2) in our implementation.

5 Conclusions

This paper has presented the implementation details and first reported profiling re-
sults for a newly proposed space–time parallel algorithm for time dependent PDEs.
The RIDC–DD method combines traditional domain decomposition in space with
a new family of deferred correction methods designed to allow parallelism in time.
Two possible implementations are described and profiled. The first, a traditional hy-
brid OpenMP–MPI implementation, requires potentially difficult modifications of
an existing parallel spatial solver. Numerical experiments verify that the algorithm
achieves its designed order of accuracy and scales well. The second strategy al-

8 Ronald D. Haynes and Benjamin Ong

lows a relatively easy reuse of an existing parallel spatial solver by using OpenMP
to spawn threads for the simultaneous prediction and correction steps. This non–
traditional hybrid use of OpenMP and MPI currently requires writing of custom
thread–safe and thread–independent MPI routines. Profile analysis shows that our
non-traditional use of OpenMP–MPI suffers from higher communication costs than
the standard use of OpenMP-MPI. An inspection of the prediction and correction
equations indicates that optimized Schwarz variants of the algorithm are possible
and will enjoy nice load balancing. This work is ongoing.

Acknowledgements This work was supported by the Institute for Cyber-Enabled Research (iCER)
at MSU, NSERC Discovery Grant 311796, and AFOSR Grant FA9550-12-1-0455.

References

1. Mpi 3.0 standardization effort. http://meetings.mpi-forum.org/MPI_3.0_
main_page.php. Accessed 10/25/2012

2. Böhmer, K., Stetter, H.: Defect correction methods. theory and applications (1984)
3. Cai, X.C.: Additive Schwarz algorithms for parabolic convection-diffusion equations. Numer.

Math. 60(1), 41–61 (1991)
4. Cai, X.C.: Multiplicative Schwarz methods for parabolic problems. SIAM J. Sci. Comput.

15(3), 587–603 (1994)
5. Christlieb, A., Macdonald, C., Ong, B.: Parallel high-order integrators. SIAM J. Sci. Comput.

32(2), 818–835 (2010)
6. Christlieb, A., Ong, B.: Implicit parallel time integrators. J. Sci. Comput. 49(2), 167–179

(2011)
7. Christlieb, A., Ong, B., Qiu, J.M.: Comments on high order integrators embedded within in-

tegral deferred correction methods. Comm. Appl. Math. Comput. Sci. 4(1), 27–56 (2009)
8. Dubois, O., Gander, M., Loisel, S., St-Cyr, A., Szyld, D.: The optimized Schwarz method with

a coarse grid correction. SIAM J. Sci. Comput. 34(1), A421–A458 (2012)
9. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differ-

ential equations. BIT 40(2), 241–266 (2000)
10. Gander, M., Vandewalle, S.: On the superlinear and linear convergence of the parareal algo-

rithm. Lecture Notes in Computational Science and Engineering 55, 291 (2007)
11. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
12. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection

reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)
13. Koehler, S., Curreri, J., George, A.: Performance analysis challenges and framework for high-

performance reconfigurable computing. Parallel Computing 34(4), 217–230 (2008)
14. Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDEs. Comptes

Rendus de l’Academie des Sciences Series I Mathematics 332(7), 661–668 (2001)
15. Minion, M., Williams, S.: Parareal and spectral deferred corrections. In: NUMERICAL

ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Anal-
ysis and Applied Mathematics 2008. AIP Conference Proceedings, vol. 1048, pp. 388–391
(2008)

16. Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Communica-
tions of the ACM 7(12), 731–733 (1964)

17. Ong, B., Haynes, R., Christlieb, A.: A parallel space–time algorithm. SIAM J. Sci. Comput.
(2012). In Press

18. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory, Springer
Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005)

