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1 Introduction

It is well accepted that the efficient solution of complex partial differential
equations (PDEs) often requires methods which are adaptive in both space
and time. In this paper we are interested in a class of spatially adaptive mov-
ing mesh (r-refinement) methods introduced in [12, 9, 10]. Our purpose is to
introduce and explore a natural coupling of domain decomposition, Schwarz
waveform relaxation (SWR) [4], and spatially adaptive moving mesh PDE
(MMPDE) methods for time dependent PDEs. SWR allows the focus of com-
putational energy to evolve to the changing behaviour of the solution locally
in regions or subdomains of the space–time domain. In particular, this will en-
able different time steps and indeed integration methods in each subdomain.
The spatial mesh, provided by the MMPDE, will react to the local solution
dynamics, providing distinct advantages for problems with evolving regions
of interesting features.

In this paper we detail and compare approaches which couple SWR with
moving meshes. Section 2 provides a brief review of the r–refinement method.
We contrast the related approaches introduced in [7] and [6] with a new moving
subdomain method in Section 3. We conclude in Section 4 with a brief pre-
sentation of numerical results to demonstrate the moving subdomain method.

2 Moving Meshes

A recent and thorough review of moving mesh methods may be found [2] and
further details are provided in the extensive bibliography therein.

Moving mesh methods solve for the solution and underlying mesh simul-
taneously. Consider the solution of a PDE of the form

ut = L(u) 0 < x < 1, t > 0,
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subject to appropriate initial and boundary conditions, where L denotes a
spatial differential operator in the physical coordinate x. Our goal is to find,
for fixed t, a one–to–one coordinate transformation

x = x(ξ, t) : [0, 1]→ [0, 1], with x(0, t) = 0, x(1, t) = 1

such that u(x(ξ, t), t) is sufficiently smooth that a simple mesh, often uniform
ξi = i

N , i = 0, . . . , N can be used to resolve solution features in the com-
putational variable ξ ∈ [0, 1]. The mesh in the physical coordinate x is then
specified from the mesh transformation by xi(t) = x(ξi, t), i = 0, 1, . . . , N .

A standard way to perform mesh adaptation in space is to use the equidis-
tribution principle (EP). Given some measure M(t, x, u) of the error in the
solution, the (EP) requires that the mesh points satisfy∫ xi

xi−1

M(t, x̃, u) dx̃ ≡ 1

N

∫ 1

0

M(t, x̃, u)dx̃,

or equivalently ∫ x(ξi,t)

0

M(t, x̃, u) dx̃ =
i

N
θ(t) = ξiθ(t), (EP)

where θ(t) ≡
∫ 1

0
M(t, x̃, u) dx̃ is the total error in the solution.

Enforcing this condition concentrates mesh points where M or the error
is large. It follows directly from (EP) that

∂

∂ξ

{
M(t, x(ξ, t), u)

∂

∂ξ
x(ξ, t)

}
= 0. (1)

Discretizing (1) and the physical PDE spatially results in an index–2 DAE
system which is stiff and ill–conditioned – a problem numerically [1]. Con-
sequently, the (EP) is often relaxed to require equidistribution at a later
time t + τ . Using Taylor series and dropping higher order terms a number
of parabolic MMPDEs are developed. One particularly useful MMPDE is

ẋ =
1

τ

∂

∂ξ

(
M(t, x(ξ, t), u)

∂x

∂ξ

)
. (MMPDE5)

The relaxation parameter τ is chosen in practice so that the mesh evolves at a
rate commensurate with that of the solution u(x, t). A simple, popular choice
is the arclength like monitor function M(x, u, t) = (1+α|ux|2)1/2. This choice
is based on the premise that we expect the error in the numerical solution
to be largest in regions where the solution has large gradients. The choice of
monitor function is often problem class dependent; generally M is related to
specific powers of the solution or its derivatives. For the generalization to two
and three spatial dimensions, the reader is referred to [8].
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Using the mesh transformation x = x(ξ, t) to rewrite the physical PDE in
quasi-Lagrangian form we have u̇ − uxẋ = Lu, where u̇ = ut + uxẋ. The
MMPDE and physical PDE are solved simultaneously for the mesh x(ξ, t) and
corresponding solution u(x(ξ, t), t). Traditionally, this system is solved using
the moving method of lines (MMOL) approach – the problem is discretized
in space and the resulting system of ODEs is solved using a stiff IVP solver
like DASSL [11]. Initial and boundary conditions for the physical PDE come
from the problem description. On a fixed interval we specify ẋ0 = ẋN = 0 as
boundary conditions for the mesh. If the initial solution is smooth then an
initial uniform mesh for x(ξ, 0) is normally sufficient, else an initial mesh is
computed which equidistributes u(x, 0).

This traditional MMOL approach is not able to exploit local time scales
in specific components of the solution – rather a single step size is used for all
components. In practice, time step selection, via local error control, is often
dictated by a very few components which are localized spatially. This suggests
that a spatial partitioning via a domain decomposition (DD) approach may
exploit these local time scales. A DD strategy would also enable different
solution strategies in regions of a space and time; in particular a mixture of
fixed and moving grids may be used as dictated by the solution. Of course
various DD methods are amenable to parallel implementation – an approach
not commonly utilized by the moving mesh community.

3 Domain Decomposition Strategies

Moving mesh methods naturally provide two spatial variables: the physical
co–ordinate x and the computational co–ordinate ξ. DD methods partition
the spatial variable into overlapping or non–overlapping subdomains. SWR
iteratively solves the PDE forward in time on each subdomain. Boundary
information is exchanged at the end of a time window. Designing an algorithm
which couples DD and moving meshes requires a choice of the spatial variable
to partition – resulting in dramatically different DD methods, see Fig. 1.

The physical space–time domain Ω is divided into non–overlapping sub-
domains Ω̃j with boundaries ∂Ω̃j . Γ̃j is the portion of ∂Ω̃j interior to Ω. An

overlapping decomposition Ωj is created by enlarging each Ω̃j in such a way
so that the boundaries of Ωj interior to Ω, Γj , are at least some distance δ > 0

from Γ̃j .
In this section we describe and contrast two approaches [7, 6] which utilize

SWR in the physical coordinate x with a new strategy which applies SWR
to the MMPDE in the computational coordinate ξ. As we will see this new
approach gives rise to moving subdomains.
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Fig. 1. A typical subdomain for the three SWR Moving Mesh Methods.

3.1 SWR in Physical Co–Ordinates – Existing Methods

The first attempts [7, 6] to couple SWR and moving mesh methods use par-
titions of fixed width in the physical space.

In [7], depicted in Fig. 1(a), the width of Ω̃j is fixed. The overlap region
is specified by a number of mesh points. The mesh points in the interior of
Ω̃j and in the overlap region are free to move according to the MMPDE.
In this way we recover much of the strength of the moving mesh approach.
The position of Γ̃j is fixed to ensure a reasonable partitioning of the physical
space and allow the user to ensure a sufficient resolution of the subdomain by
specifying an acceptable number of mesh points. Moving mesh methods are
designed to prevent mesh crossings, hence the fixed location of Γ̃j does restrict
the free flow of mesh points in and out of the overlap region. A modification
of moving mesh software is required to fix the location of Γ̃j within Ωj .

The algorithm solves the coupled system of physical PDE and MMPDE
iteratively on overlapping subdomains. After each subdomain solve (in the
Gauss–Seidel approach) or after all the subdomain solves (in the Jacobi vari-
ant) boundary information is exchanged. Dirichlet transmission conditions are
specified on each subdomain. Unlike typical SWR methods, both the solution
of the physical PDE on the boundary and the location of the boundary itself
is exchanged. Since the overlap is a simply a number of mesh points, the loca-
tion of the boundary of the neighbouring subdomain for the next iteration is
extracted directly from a specific mesh trajectory obtained during the subdo-
main solve. The solution along that moving boundary provides the boundary
data for the physical PDE. Interpolation in time is required as subdomains
are free to choose time steps dictated by their own local solution dynamics.

In [6] it was realized that it is unnecessary to fix the location of Γ̃j . As
illustrated in Fig. 1(b) the extended subdomain Ωj is of fixed width in the
physical space, the position of Γj is fixed. The overlap is of fixed width but
now mesh points are able to move in and out of the overlap region as directed
by solution. Indeed, it differs from the typical SWR approach (cf. [4, 3]) only
in the choice of the solver on each subdomain. The moving mesh solver may
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be used without modification. Hence [6] is better aligned with the motivation
and philosophy of the DD approach.

As in [7] the user is responsible to ensure a sufficient number of mesh points
reside in each subdomain to resolve any features which may arise. Although
this approach may not be scalable, it may be useful in situations where the
solution has many interesting features developing in disparate locations in the
physical space. Current moving mesh methods on one domain have difficulty
with this situation. The ability to vary the number of mesh points on each
subdomain makes it easier to ensure a sufficient number of mesh points in all
parts of physical space. This suggests that this technique should be coupled
with time windows and a mechanism to estimate the number of points required
on that time window, ie. use an hr–refinement strategy on each subdomain.
Work is ongoing to explore this idea.

The fixed location of Γj in [6] provides the advantage of being able to
reuse quality moving mesh software as the solver on each subdomain. How-
ever, interpolation in both space and time is required to obtain the correct
boundary data for the next iteration. Within each subdomain the mesh points
are all moving, hence there is no guarantee that a mesh point will be located
at position Γj at any instant in time. As a result, the boundary data for
the physical PDE is obtained by interpolating (in space) the solution on the
neighbouring subdomain. Subsequent interpolation in time may be required
to provide the correct boundary data at the sequence of time steps chosen by
the IVP software.

Applying a SWR moving mesh method in physical coordinates is concep-
tually analogous to the previous descriptions of Schwarz waveform relaxation
on fixed grids. However, as mentioned above there are many practical chal-
lenges posed by using the moving mesh solver on each subdomain. The fixed
boundaries of each subdomain require a careful choice of the number of mesh
points and relatively costly interpolations to provide the boundary conditions
for adjacent subdomains. The standard DD method (with fixed and uniform
grids) divides the total number of physical mesh points evenly amongst the
subdomains. There is a direct correspondence between the number of mesh
points and the width of each subinterval. If we partition in physical space,
we can not (in general) simply divide the number of mesh points required for
the one domain solve evenly amongst the number of subdomains. Hence the
algorithm may not scale appropriately. We begin to address these difficulties
with the new method presented in the next section.

3.2 SWR in Computational Co–Ordinates – A New Approach

In this paper we introduce a decomposition of the computational co–ordinate
ξ into overlapping subdomains of fixed width, see Fig. 1(c). The boundaries Γj
are fixed in ξ–space, which gives rise to time dependent boundaries in physical
space – we have a moving subdomain method.
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In the discrete version of the algorithm a subdomain is simply defined by
a set number of mesh points not a region of physical space. We divide the
number of mesh points required for the one domain solve evenly amongst the
subdomains. As a result the method is (at least) spatially scalable. This al-
lows mesh points (and subdomains) complete freedom to move throughout
the physical space as controlled by the dynamics of the underlying solution.
The subdomains provide a coarse grain adaptivity – they are chosen to auto-
matically equidistribute the error measure in the solution and must (at least
approximately) equidistribute the computational effort to compute it.

The overlap region is of fixed width in the computational space but is
specified only by a fixed number of mesh points in the physical space. The
required boundary values of the subdomain solution, at any time t, is obtained
by interpolating the solution from the neighbouring subdomains from the
previous iteration. Since the location of the boundary is obtained from the
neighbouring subdomains directly, only interpolation in time is required.

4 Numerical Results and Comments

Numerical results for SWR applied in the physical coordinates may be found
in [7, 6]. Here we illustrate the new moving subdomain method for a typical
test problem for moving mesh methods taken from [10]. Consider the function

u(x, t) =
1

2
[1− tanh(c(t)(x− t− 0.4))]

c(t) = 1 +
999

2
[1 + tanh(100(t− 0.2))] , 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.55.

Fig. 2. Exact solution of test problem.

The exact solution, illustrated in
Fig. 2, has regions of rapid tran-
sition in space and time. The sur-
face is shaded according to the (spa-
tial) gradient. A typical hyperbolic
tangent profile develops just before
t = 0.2 and the moves from left to
right (in x).

The mesh transformation which
satisfies (MMPDE5) for u(x, t) is
given in Fig. 3. The heavily shaded
region has small dx/dξ values – these flat regions in the mesh transformation
indicate a high concentration of mesh points. By design this region of high
resolution corresponds to the location of sharp transition in u in Fig. 2.

In Fig. 4 we depict the mesh movement by drawing the mesh trajectories
obtained during the one domain solution. Each line corresponds to the position
of a grid point as a function of time. The mesh lines concentrate just before
t = 0.2, the moment of front formation and follow the front to the right.
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Fig. 3. One domain mesh transforma-
tion satisfying the relaxed EP.

Fig. 4. One domain mesh trajectories.

(a) Schwarz iteration 1. (b) Schwarz iteration 2.

Fig. 5. Mesh trajectories for three moving subdomains on subsequent Schwarz
iterations

Fig. 5 demonstrates the moving subdomains which result by solving
(MMPDE5) using a SWR method in the computational coordinate ξ. Three
subdomains are illustrated for two subsequent Schwarz iterations. We see that
the boundaries of the subdomain are time-dependent and in fact change from
iteration to iteration. The subdomains consist of an equal number of mesh
points and automatically adapt to the dynamics of the solution.

Theoretical results for the alternating Schwarz iteration applied to the
steady form of (1) are now available [5] and give a local convergence result.
In fact, numerical evidence suggests a more robust performance. Extensions
of theoretical results in the time dependent case are underway. MPI code for
the two spatial dimension version of the algorithm presented in [6] is complete
and rigourous numerical studies have commenced. Clearly, improved perfor-
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mance of these DD approaches require the development of optimal transmis-
sion conditions tuned for this class of problems. Theoretical investigations and
numerical experimentation are in progress.
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