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Preconditioning for a Class of Spectral Differentiation
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We propose an efficient preconditioning technique for the numerical solution
of first-order partial differential equations (PDEs). This study has been moti-
vated by the computation of an invariant torus of a system of ordinary differ-
ential equations. We find the torus by discretizing a nonlinear first-order PDE
with a full two-dimensional Fourier spectral method and by applying New-
ton’s method. This leads to large nonsymmetric linear algebraic systems. The
sparsity pattern of these systems makes the use of direct solvers prohibitively
expensive. Commonly used iterative methods, e.g., GMRes, BiCGStab and
CGNR (Conjugate Gradient applied to the normal equations), are quite slow
to converge. Our preconditioner is derived from the solution of a PDE with
constant coefficients; it has a fast implementation based on the Fast Fourier
Transform (FFT). It effectively increases the clustering of the spectrum, and
speeds up convergence significantly. We demonstrate the performance of the
preconditioner in a number of linear PDEs and the nonlinear PDE arising
from the Van der Pol oscillator.

KEY WORDS: Preconditioners; fast Fourier transform; dynamical systems;
invariant torus; spectral collocation; pseudospectral method; iterative methods
for nonsymmetric systems
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1. INTRODUCTION

The key problem in solving differential equations is often the effective
solution of a linear system of equations. Frequently, the matrix of such a
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system is large and sparse, and iterative methods such as conjugate gradi-
ent (CG), bi-conjugate gradient (BiCG) and variations, QMR and GMRes
have become methods of choice. This is for a variety of reasons, including
memory requirements, speed, ability to tackle finer discretizations, and to
a good extent, the fact that only an approximate solution is needed – the
exact solution of the linear system only provides an approximation to the
solution of the original differential equation. Further, in Newton–Krylov
approaches to nonlinear problems it is well known that it may not be nec-
essary to compute all Newton steps to high accuracy (see e.g. [23]

In practice, iterative methods need to be preconditioned to make
them effective. Instead of solving

Mu=f

one solves

P −1Mu=P −1f ,

where P is in some sense close to M, and cheaply invertible, i.e.,
computing P −1z, or solving Pw = z is cheap. By choosing P close to M,
the spectrum of P −1M will have favorable properties for iterative methods
(clustered eigenvalues, small spectral radius, etc.).

Taking P =M gives the best spectral properties, leaving us, however,
with the original problem when applying the preconditioner. On the other
hand, with P = I the preconditioner can be inverted easily, without any
improvement to the spectrum. A good preconditioner is obviously some-
where between these two extremes.

In this paper we are interested in finding good preconditioners for
solving the periodic first order linear partial differential equation

L(u)≡a(x, y)
∂u

∂x
+b(x, y)

∂u

∂y
+ c(x, y)u=f (x, y). (1)

By periodic we mean that the coefficients and the boundary conditions are
2π -periodic in both (x and y) variables. Our preconditioner is related to
the discretization of the differential operator in (1) with constant coeffi-
cients, i.e.,

L̄(u)≡α
∂u

∂x
+β

∂u

∂y
+νu. (2)

Applying a full Fourier spectral discretization to (1) leads to a “fairly
sparse”, highly structured, nonsymmetric linear algebraic system. Its spar-
sity pattern, however, prohibits a direct solution method. On the other
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hand, the efficiency of iterative methods relies critically on the distribution
of the spectrum and the normality of the eigenvectors of the linear system.
Various preconditioning methods have been developed in the past in the
context of different applications. For instance, the semi-circulant precon-
ditioner for convection-diffusion equations [15]; the ILU and characteristic
Gauss–Seidel preconditioners for the finite volume discretization of hyper-
bolic problems [18]; the circulant preconditioner for Hermitian systems [3].
These methods are, however, for compact discretization schemes with spe-
cial matrix structures. They are not applicable in the case of our spectral
discretization of (1).

We propose in this paper a preconditioner for the efficient iterative
solution of the spectral discretization of (1). The idea is to define the
preconditioner as the matrix corresponding to the discretization of (2),
i.e., the differential operator with constant coefficients. The preconditioned
system can then also be interpreted as an approximation of the linear
problem with the operator L̄−1L. Hence, the efficiency of the precondi-
tioned iterative methods relies on the spectral properties of L̄−1L. When
the coefficients in (1) vary only moderately, the spectrum of the precon-
ditioned system will be clustered near the number 1. Roughly speaking,
L̄−1L is a differential operator of order 0. Therefore, we may expect more
clustering in its spectrum, which is generally good for iterative methods
[21]. Another important feature of our preconditioner is that its action can
be easily and efficiently accomplished by a fast algorithm using the FFT.

The idea of defining the preconditioner as a discretization of a suit-
able linear preconditioning operator has been studied previously, and
applied widely to linear and nonlinear elliptic problems, see, e.g., [8,9].
Indeed, due to the spectral equivalence of various elliptic operators, the
condition numbers of so defined preconditioned systems can be bounded
by constants independent of the mesh sizes. For hyperbolic equations,
however, there is in general no spectral equivalence relation between the
differential operator of the equation and a preconditioning operator with
constant coefficients. Therefore, it is in general not possible to prove
the mesh size independent boundedness for the spectra of the precondi-
tioned systems. Nevertheless, we find that applying the constant coefficient
preconditioner makes the spectra of the preconditioned system more clus-
tered, which is desirable for the iterative methods designed for nonsymmet-
ric systems. Numerical results show that the preconditioner defined by (2)
speeds up the convergence of the iterative methods significantly for many
of the linear test problems, and, more importantly, for our nonlinear appli-
cation, namely the Van der Pol oscillator, see Secs. 2.4 and 3.2.

An outline of the paper is as follows. In Sec. 2 we briefly describe
the spectral discretization of (1). We introduce the preconditioner and
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its implementation. We present a number of numerical examples to
demonstrate properties of the preconditioned system, and compare the
performance of the preconditioner in various cases with different iterative
methods, such as BiCGStab(�) [13,20,24], GMRes [19], and CGNR. We
find that when the coefficients in (1) vary moderately, preconditioned iter-
ative methods are very fast and reliable. If these coefficients vary strongly,
iterative methods in general do not perform very well, but our precon-
ditioner still provides significant gains in speed and accuracy. Difficulties
arise when the coefficients a and b in (1) change signs. If only one of
them does, our preconditioning continues to be a successful strategy; if,
however, both of them change signs, the preconditioner fails. In Sec. 3 we
present an application in the context of computing an invariant torus, and
introduce the computational methods for the Van der Pol oscillator. This
formulation leads to a first order nonlinear hyperbolic differential equation
with periodic boundary conditions. We use Newton’s method to linearize
it, and solve the linearized equation with the methods explored in Sec. 2.
The effectiveness of our preconditioner in computing invariant tori for the
Van der Pol oscillator is demonstrated for various iterative solvers. Finally,
Sec. 4 contains conclusions.

2. DISCRETIZATION AND SOLUTION METHOD

2.1. Fourier Spectral Collocation Method

In this section, we consider the Fourier spectral collocation method
for equation (1). We denote by Πp the set of real-valued trigonomet-
ric polynomials of degree � p. Let N be a positive integer, and xj =
(j/N)2π, j =0,1, . . . ,N −1, be the set of Fourier collocation points. For
any continuously differentiable function v(x), we denote

v =




v(x0)

v(x1)
...

v(xN−1)


 and

dv
dx

=




dv
dx

(x0)

dv
dx

(x1)

...
dv
dx

(xN−1)




.

The N ×N Fourier spectral differentiation matrix D = (Djk) is defined as
follows: for even N

Djk =
{

1
2 (−1)j−k cot (j−k)π

N
, j �=k,

0, j =k
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and for odd N

Djk =
{

1
2 (−1)j−k/ sin (j−k)π

N
, j �=k,

0, j =k.

It is not difficult to verify that for any v ∈Π[N−1/2], where [s] denotes the
integer part of a number s,

dv
dx

=Dv.

We note that D is a circulant skew-symmetric Toeplitz matrix.
In two-dimensions, let u(x, y) be a trigonometric function of degree

� [(N −1)/2] in both x and y. Let xj and yk be the collocation points in
the x and y directions, respectively. We arrange the values of the function
u at the collocation points in an N ×N array

U =




u(x0, y0) u(x0, y1) · · · u(x0, yN−1)

u(x1, y0) u(x1, y1) · · · u(x1, yN−1)
...

...
. . .

...

u(xN−1, y0) · · · u(xN−1, yN−1)


 . (3)

Suppose that the partial derivatives (with respect to x and y) of u at
(xj , yk) are arranged in the same manner as in (3) in the arrays ∂U/∂x

and ∂U/∂y. Then we have (see [1])

∂U

∂x
=DU and

∂U

∂y
=UDT =−UD.

The Fourier spectral collocation discretization for (1) may now be written
as

A · (DU)+B · (UDT )+C ·U =F. (4)

The matrices A,B,C, and F contain the values of the coefficient functions
a, b, c, and f evaluated at (xj , yk) and ordered as in (3). The “·” repre-
sents the entry-wise multiplication or Hadamard product of two matrices.

Equation (4) is a linear equation for the unknown matrix U , which
contains the values of the unknown function u at the collocation nodes.
We may also write it as a linear system of equations for an unknown
vector u. Let u and f be the N2 ×1 vectors constructed from U and F col-
umn–wise. Define Da as the N2 ×N2 diagonal matrix with the mth diag-
onal entry equal to Ajk for m= j + (k − 1)N , and define the matrices Db

and Dc accordingly with entries from B and C, respectively. Let

M =Da(D ⊗ IN)+Db(IN ⊗D)+DcIN2 ,
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where “⊗” is the tensor product of two matrices, and IN and I
N2 repre-

sent the identity matrices of order N and N2, respectively. Then (4) can
be expressed equivalently as the linear system of equations

Mu = f . (5)

2.2. Iterative Techniques and Preconditioning

In this section we consider the solution of the linear system (5). The
sparsity pattern of the matrix M is illustrated in Fig. 1. It is clear that M

is a sparse, structured matrix. The large bandwidth, however, leads to fill–
in for standard sparse direct techniques, as shown by the LU factors of
M. Typical sparse reordering algorithms have little effect for matrices with
this structure [14].

The high cost of direct methods and the ability to provide fast
matrix–vector multiplication routines, due to the structure of M, suggest
the use of iterative methods. Such an approach often proves necessary for
efficient computation with problems, which are memory intensive or have
exploitable structure [2,22]. A popular class of iterative methods are Kry-
lov subspace methods. The success of these iterative methods depends on
the computation of a good approximation from a suitable Krylov space of
moderate dimension. If this is not feasible, we seek to solve a precondi-
tioned system, as mentioned in the introduction, for which iterative meth-
ods have improved convergence properties. A good preconditioner should
enjoy several properties: memory requirements of the same order as M,
cost comparable to the computation of matrix–vector products involving
M, and an improved convergence rate which justifies the additional costs.

Fig. 1. Structure of the coefficient matrix M (left) and corresponding LU factors (right).
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We now propose a preconditioner for the iterative solution of (5). Our
basic strategy is to use the constant coefficient problem corresponding to
(4) to construct the preconditioner. Let ā and b̄ be the average of the
entries of matrices A and B, separately. Let ν be a user-defined parame-
ter. We define a preconditioner, P , for the linear algebraic system (4), by
defining its multiplication with any N ×N matrix X as follows

PX = āDX + b̄XDT +νX. (6)

This is indeed the matrix for the spectral collocation discretization of the
operator

L̄(u)≡ ā
∂u

∂x
+ b̄

∂u

∂y
+νu,

i.e., (2) with α = ā, β = b̄.
The preconditioned matrix P −1M is essentially the discretization of

the operator L̄−1L, a differential operator of order 0, which in some sense
is close to the identity. Therefore, we expect clustering in its spectrum,
and, hence also the spectrum of P −1M, which is promising for iterative
methods. Our preconditioner is intimately connected to the underlying
continuous problem, and is not directly derived from the matrix of the sys-
tem we are trying to solve.

We shall discuss the fast algorithm to implement our precondition-
er in Sec. 3. In Sec. 2.4 we demonstrate how an appropriate choice of
the constant ν localizes the spectrum of the preconditioned system, which
improves the convergence properties of various iterative methods.

2.3. Fast Algorithm to Evaluate the Action of Preconditioner

Preconditioned iterative methods require a routine for evaluating the
product of P −1 with a (residual) vector. Assuming the residual vector
of (5) is expressed in matrix form R, ordered in the same way as U in
(3), then calculating P −1R is equivalent to solving the linear equation
PX =R, or

āDX + b̄XDT +νX =R (7)

for the N ×N matrix X. This is actually a variation of Lyaponov’s matrix
equation for X [16]. To solve (7), we note that the spectral differentiation
matrix D admits the eigen-decomposition

D =T ΛT −1 =T ΛT H,
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where

Λ=
{

diag(0, i,2i, . . . ,
(

N
2 −1

)
i,0,− (

N
2 −1

)
i, . . . ,−i), for N even,

diag(0, i,2i, . . . ,
(

N−1
2

)
i,−

(
N−1

2

)
i, . . . ,−i), for N odd

and

T = 1√
N




1 eix0 ei·2x0 · · · ei·(N−1)x0

1 eix1 ei·2x1 · · · ei·(N−1)x1

· · · · · ·
1 eixN−1 ei·2xN−1 · · · . ei·(N−1)xN−1


 .

We observe that the matrix T is unitary, T −1 =T H . This suggests the fol-
lowing algorithm to solve Eq. (7):

(i) compute R̂ =T HRT H , and rewrite (7) as

āΛX̂ + b̄X̂Λ+νX̂ = R̂,

where X̂ =T HXT H ;
(ii) solve for X̂ = (X̂�,m) using the formula

X̂�,m = R̂�,m

āλ� + b̄λm +ν
, 1��, m�N.

where λ�,1���N , are the eigenvalues of D;
(iii) calculate X =T X̂T .

To analyze the cost of performing the preconditioning, we define WMx

as the number of arithmetic operations required for one coefficient matrix-
vector multiplication in the system (5). It mainly involves two products
of N ×N matrices, and each product requires 2N3 arithmetic operations.
Therefore, WMx =4N3. Now consider the number of operations needed to
carry out the above preconditioning algorithm. Steps (i) and (iii) involve
four multiplications of complex N × N matrices, each requiring 8N3 real
arithmetic operations. This works out to approximately 32N3 arithmetic
operations, or about 8WMx . The work load for Step (ii) is only 4N2 oper-
ations, negligible to the work required in steps (i) and (iii). Hence the total
work for each each action of the preconditioner is about 8 times the work
of a coefficient matrix-vector product. This cost is too high to produce any
significant benefits for the preconditioning technique. Indeed, if the pre-
conditioner was implemented as described above, then, for many problems,
the preconditioned iterative methods would require no less computational
work than those without preconditioning.
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Fortunately, we can take advantage of the connection between
the matrix T and the discrete Fourier transform. In fact, T is the
matrix associated with the one-dimensional inverse discrete Fourier trans-
form. For any function v ∈ Span{eikx,−(N/2) − 1 � k � (N/2)}, set v =
(v(x0), v(x1), . . . , v(xN−1))

T , and denote by v̂ the vector of the Fourier coeffi-
cients of v. Then

v =T v̂ and v̂ =T H v.

Therefore, it is possible to compute the product T HRT H in step (i) effi-
ciently by the Fast Fourier Transform (FFT). Indeed, we may rewrite the
product T HRT H as

T HRT H = (T H (T HR)T )T

Thus, R̂ = T HRT H is actually the two-dimensional discrete Fourier trans-
form of the data R. Similarly, X = T X̂T is the two-dimensional inverse
Fourier transform of the data X̂. Consequently, the total work WP −1M per
action of the preconditioner is equivalent to that of 2 two-dimensional
FFT. If N is an integer power of 2, each two-dimensional FFT requires
O(N2 ln N) operations. Hence, the action of the preconditioner may be
accomplished by using the FFT in O(N2 ln N) operations. For large values
of N this is far less work than the direct matrix multiplication approach.

Naturally, one may also implement the matrix multiplication Mx by
using FFTs. In fact,

DX =T ΛT HX =T (ΛX̂)T and XDT =XT HΛT =T (X̂Λ)T ,

where X̂ = T HXT H is the Fourier transform of X. Therefore, evaluating
on the left hand side of (4) requires one two-dimensional FFT to com-
pute the Fourier coefficients of real-valued data U , and two two-dimen-
sional inverse FFTs to compute the function values of Ux and Uy from
their Fourier coefficients. Thus, if Mx is calculated in this manner, the
total work needed is about three two-dimensional FFTs. Consequently, the
work needed for one action of the preconditioner is about 2/3 of the work
WMx .

WP −1R ≈ 2
3WMx. (8)

We shall use this work load ratio when comparing the overall cost of itera-
tive methods with and without preconditioners in our numerical examples.
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2.4. Numerical Examples for Linear Equations

In this section, we demonstrate the performance of the precondition-
er defined in (6) for a number of numerical examples. We shall employ
Krylov subspace based iterative methods, in particular BiCGStab(�) [20] (a
variant of Gutknecht’s BiCGStab2 method [13]), GMRes(k), the restarted
GMRes method of Saad [19], and CGNR, the classical conjugate gradient
method applied to the normal equations of (5). To implement CGNR we
supply the formula for MT as follows

MT = Da(D
T ⊗ IN)+Db(IN ⊗DT )+DcIN2

= −Da(D ⊗ IN)−Db(IN ⊗D)+DcIN2 .

Thus, if the unknown v is arranged in matrix form V , MT v is equivalent
to

−A · (DV )−B · (V DT )+C ·V.

In the following examples, we shall use the the four iterative methods
BiCGStab(2), BiCGStab(8), GMRes(10) and CGNR to solve the linear
system (4) for various cases of the linear PDE (1). We report the number
of iterations required as well as the accuracy achieved by the various
iteration schemes. We do not discuss how well the solution of the discret-
ized problem (5) approximates the exact solution of the continuous prob-
lem (1). Indeed, in all cases, the numerical solutions are found to converge
to the exact solution of (1) with the rate of convergence O(N−s), where s

depends on the smoothness of the exact solution. This is typical for spec-
tral approximation. Break-down or divergence of an iterative method is
indicated in the tables by “**”.

To compare the overall work used by the iterative methods with and
without preconditioning, we note that when preconditioning is used, each
coefficient matrix-vector product is accompanied by an action of the pre-
conditioner. Thus each step of the preconditioned iteration requires about
5/3 the work for the unpreconditioned iteration, see (8). The various iter-
ative methods require the following number of matrix-vector products per
iteration:

Number of matrix-vector multiplications per step
BiCGStab(2) BiCGStab(8) GMres(10) CGNR

4 16 11 4
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Table I. Maximum Number of Iterations Allowed

N 16 32 64 128 256

BiCGStab(2) 128 256 512 512 768
BiCGStab(8) 32 64 128 128 192
GMres(10) 64 128 256 256 384

CGNR 128 256 512 512 768

To take advantage of the FFT, we choose N as integer powers of 2
for all calculations. We terminate the iteration when the 2-norm of the
residual vector is reduced by tol=N ∗10−9, i.e. when

||rn||2 <tol||r0||2.

We scale the tolerance with N , simply because the norm of a vector with
all entries equal to 1 is N . The criterion is based on achieving a given
reduction of the norm of the residual vectors from its initial value. As a
consequence, in certain cases, the preconditioned method may not only be
much faster, but may also achieve superior accuracy, as the initial residual
for the preconditioned system may be smaller than for the original system
by several orders of magnitude. Hence, in our results, we list the number
of iterations and the error ||un −uexact||2 at the last iteration. We list the
error in cases of convergence failure when this error is “reasonably small”.
We also stop the iterative methods when the number of iterations exceeds
an upper bound, (see Table I.) We set these limits so that the total work
allowed for the various iterative methods is roughly the same. We allow
only modest growth of the upper limit with N , because for good precon-
ditioners, the number of iterations required should be independent of N .
We want to emphasize that we are solving systems with matrices of size
N2 by N2. Hence, in our linear examples, the largest systems we solve have
65536 equations and unknowns.

Example 1. Equation (1) with coefficients

a =1, b=100, c=1.

In this case, the matrix M has eigenvalues

λ�m(M)= c+ i(a�+bm), −(N/2−1)��, m�N/2
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with the corresponding eigenvectors U�m = (ei(�xj +myk))0�j,k�N−1. The
preconditioner P has the same eigenvectors, but with corresponding eigen-
values

λ�m(P )=ν + i(a�+bm), −(N/2−1)��, m�N/2.

Therefore, the preconditioned coefficient matrix P −1M has the same eigen-
vectors with corresponding eigenvalues

λ�m(P −1M)= c+ i(a�+bm)

ν + i(a�+bm)
, −(N/2−1)��, m�N/2.

It is easy to establish that

|λ(M)|⊂ [c,
√

c2 + (|a|+ |b|)2N2/4];
Real(λ(M))= c, and |Imag(λ(M))|� (|a|+ |b|)N

2 .

Note that for the function f (s)= (c+ is)/(ν + is) of the real variable s,

min(1, | c
ν
|) � |f (s)| � max(1, | c

ν
|).

min(1, | c
ν
|) � |Real(f (s))| � max(1, | c

ν
|)

|Imag(f (s))| � 1
2 |1− c

ν
|.

Therefore, we have for λ(P −1M) that

|λ(P −1M)| ⊂ [min(1, | c
ν
|),max(1, | c

ν
|)]

|Real(λ(P −1M))| ⊂ [min(1, | c
ν
|),max(1, | c

ν
|)]

|Imag(λ(P −1M))| ⊂ [0, 1
2 |1− c

ν
|].

Hence, the spectrum of P −1M is contained in a box in the right half-plane,
and the size of this box is independent of N . In addition, it is easy to see
that when � and m are large, λ�m(P −1M) is clustered around the number
1 (see Fig. 2) for plots of the eigenvalues of P −1M with N =16.

Because of the special structure of the eigenvalues and eigenvectors
of M, all iterative methods converge quickly in this case (one iteration for
BiCGStab(�), one iteration for GMRes(10), and two iterations for CGNR,
for all tested values of N ). Preconditioning does not change the number of
iterations required, but the solutions are often a little more accurate. The
results are insensitive to the parameter ν in the preconditioner.

Example 2. Equation (1) with coefficients

a =1, b=10+ exp(2 sin(2x +y)), c=1.
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Fig. 2. Example 1. Eigenvalues of P −1M (N =16) with ν = 1
2 (left) and ν =10 (right).

1 1 1 1 1 1 1
-150

-100

-50

0

50

100

150
λ(M)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
ν=1

Fig. 3. Example 2. Eigenvalues of M (left) and P −1M with ν =1 (right). N =16.

In this example there is no explicit formula for the eigenvalues of M, and
its eigenvectors are no longer orthogonal. We plot in Fig. 3 the distribu-
tion of the eigenvalues of M (with N =16). Note that they are located near
the vertical line Re(λ) = 1. BiCGStab(�) converges slowly for both � = 2
and � = 8; GMRes(10) does not converge within the set number of iter-
ations.

On the other hand, with proper choice of ν, the spectrum of the
preconditioned system is contained in a small region, clustering around 1
(see Fig. 3). The number of iterations to satisfy the convergence criterion
is summarized in Table II for various choices of ν. For the unprecondi-
tioned problem, BiCGStab(�) outperforms CGNR. Preconditioning signifi-
cantly improves the speed of convergence of GMRes(k) and BiCGStab(�).

Example 3. Equation (1) with coefficients

a =1, b=10+ exp(2 sin(2x +y)), c=1− sin2 x.
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Table II. Example 2 Number of Iterations and Errors

N 16 32 64 128 256

BiCGStab(2)
No P.C. 9 23 57 145 447

9.6e-007 3.3e-006 7.0e-006 1.5e-005 2.0e-004
ν =0.5 3 3 3 3 3

7.3e-009 2.8e-008 6.3e-009 1.4e-006 5.5e-008
ν =1 3 3 2 2 2

2.0e-009 2.5e-010 1.1e-006 1.7e-006 2.8e-005
ν =10 5 5 5 4 5

4.6e-007 6.4e-007 1.2e-008 4.3e-006 1.6e-006

BiCGStab(8)
No P.C. 3 6 13 29 73

5.0e-011 1.6e-006 3.3e-006 1.4e-004 3.4e-004
ν =0.5 1 1 1 1 1

2.8e-012 8.1e-012 8.1e-012 1.3e-009 6.0e-009
ν =1 1 1 1 1 1

1.4e-013 2.1e-013 3.1e-012 4.0e-010 7.5e-010
ν =10 2 1 2 1 1

5.7e-012 4.1e-006 7.8e-011 6.3e-005 2.1e-005

GMRes(10)

No P.C. ** ** ** ** **

2.4e-003 3.4e-002

ν =0.5 1 1 1 1 1

8.1e-009 3.5e-008 1.6e-008 3.0e-008 5.9e-008

ν =1 1 1 1 1 1

1.9e-010 2.3e-009 3.2e-009 4.8e-009 9.6e-009

ν =10 2 2 2 2 2

1.3e-008 3.4e-008 5.1e-008 7.7e-008 1.5e-007

CGNR

No P.C. 43 60 115 454 **

1.4e-008 5.7e-009 2.1e-008 9.2e-008

Examples 1 and 2, the coefficient c is constant, which results in the eigen-
values of the matrix M being mostly located around a vertical line in the
complex plane. In this example, we vary c so that the eigenvalues of M

are distributed in a banded region, (see Fig. 4). For the unpreconditioned
systems all methods either fail to converge, converge very slowly, or, in the
case of CGNR, produce fairly large errors. This is partly due to the initial
residual being very large (see Table III).
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Fig. 4. Example 3. Eigenvalues of M (left) and P −1M with ν =1 (right). N =16.

Table III. Example 3 Number of Iterations and Errors

N 16 32 64 128 256

BiCGStab(2)
No P.C. ** ** ** ** **
γ =0.5 3 3 3 3 3

1.1e-008 1.3e-007 1.5e-007 1.2e-007 2.5e-006
γ =1 3 3 3 3 3

2.1e-008 2.0e-008 2.5e-008 4.8e-008 8.7e-008
γ =10 8 8 8 8 11

4.4e-007 5.9e-006 3.8e-006 1.8e-007 1.2e-004

BiCGStab(8)
No P.C. 23 ** ** ** **

9.2e-008
γ =0.5 1 1 1 1 1

8.6e-012 2.2e-008 4.3e-008 7.1e-008 1.7e-007
γ =1 1 1 1 1 1

3.0e-011 1.2e-008 1.4e-008 2.9e-008 1.5e-007
γ =10 2 2 2 2 4

2.7e-008 1.1e-007 1.0e-006 2.3e-007 4.2e-006

GMRes(10)
No P.C. ** ** ** ** **
γ =0.5 1 1 1 1 1

1.0e-007 1.7e-007 1.5e-007 3.0e-007 6.1e-007
γ =1 1 1 1 1 1

2.9e-008 5.5e-008 6.0e-008 1.2e-007 2.3e-007
γ =10 5 5 5 6 13

2.9e-007 6.7e-007 2.0e-007 4.7e-005 3.8e-004

CGNR
No P.C. 114 163 365 301 **

1.7e-004 4.1e-004 8.3e-004 4.7e-003 9.5e-003
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When c is not constant, we choose the parameter ν in the precondi-
tioner as

ν =γ c̄

where γ is a parameter, and c̄ is the average of the matrix C. This choice
of ν works only when c̄ �= 0, otherwise the preconditioner P is singular.
Clearly, γ =1 would appear to be a good choice, so that ν coincides with c

when the latter is constant. Our experiments show, however, that other val-
ues of γ are often preferable. We test various values of γ in this example.
With the preconditioned iterative methods convergence can be achieved
easily. By contrast, for the unpreconditioned system all iterative methods
except CGNR fail.

Example 4. Equation (1) with coefficients

a =1, b=1+ exp(2 sin(2x +y)), c=1.

This case is identical to Example 2, except that the relative variation of the
coefficient b is now much larger. The performance of the iterative meth-
ods is, however, quite different for these two examples. Indeed, Example 4
is a much tougher problem, although preconditioning is still very effective.
Even when the convergence criterion is not met, the preconditioned meth-
ods produce at least acceptable solutions (see Table IV). Example 4 points
to a difficulty with prescribed stopping criteria. Sometimes the residual
will drop to a certain level, and pretty much stay at this plateau for a long
time. Such behavior has been observed by many authors for various prob-
lems [10], and attempts at understanding it involve the field of values or
the polynomial hull of the matrix (see [11]) (see Fig. 5).

Example 5. Equation (1) with coefficients

a = cos(3x +4y), b=10+ exp(2 sin(2x +y)), c=10(1+ sin(x +y)).

Here we test the case where the coefficients of (1) change signs. It is well
known that special care, such as upwinding, must be taken when discretiz-
ing this type of problem. It is not appropriate to define the preconditioner
by using the average of the coefficients a, b and c of the original differen-
tial equation, as this may lead to degenerated L̄. Instead, we define ā, b̄

and c̄ in (2) as the average of the absolute values of a, b and c, respec-
tively. We report the number of iterations and the solution accuracy in
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Table IV. Example 4 Number of Iterations and Errors

N 16 32 64 128 256

BiCGStab(2)
No P.C. 18 57 118 392 **

4.1e-007 3.5e-006 3.3e-007 2.1e-005 4.3e+001
ν =0.5 11 45 16 325 **

3.1e-007 4.6e-006 1.9e-006 8.0e-006 3.3e-004
ν =1 7 33 11 56 **

4.5e-007 4.7e-006 1.9e-006 1.3e-005 8.3e-004
ν =10 10 16 19 ** **

3.3e-008 3.5e-006 2.4e-006 3.1e-003

BiCGStab(8)
No P.C. 4 13 21 69 185

1.4e-008 2.2e-006 3.6e-006 3.3e-005 7.7e-005
ν =0.5 3 14 3 31 **

1.2e-008 1.7e-006 1.9e-006 1.1e-005 1.1e-003
ν =1 3 13 4 15 **

1.3e-009 7.4e-006 6.9e-007 5.6e-006 3.0e-004
ν =10 3 9 5 ** **

6.0e-010 4.5e-007 4.1e-006 2.5e-004 5.3e-001

GMRes(10)
No P.C. 56 ** ** ** **

8.4e-007 2.9e-004 2.5e-002

ν =0.5 5 128 4 ** **

4.8e-007 8.1e-005 3.2e-006 4.9e-005 1.7e-003

ν =1 2 128 4 ** **
7.4e-007 7.8e-005 3.3e-006 2.6e-005 8.6e-004

ν =10 6 38 ** ** **

3.4e-007 6.2e-006 4.7e-004 1.1e-001

CGNR

No P.C. 63 118 178 370 **

3.7e-006 3.0e-005 8.4e-005 6.6e-004 7.3e-001

Table V, and the spectrum of A and P −1A in Fig. 6. Our precondition-
er improves the convergence of the iterative methods significantly, even
though one of the coefficients in (1) changes signs.

Example 6. Equation (1) with coefficients

a = cos(x +y), b= sin(x −y), c=10.
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Fig. 5. Example 4. Eigenvalues of M (left) and P −1M with ν =1 (right). N =16.

In this example both a and b in (1) change signs. By contrast, in Exam-
ple 5 the coefficient b is bounded below by a positive number. Therefore
dividing the equation by b leads to a wave equation with finite wave speed
a/b. When both a and b change signs as in the present example, the wave
speed would be infinite. In the current example, even though the spec-
trum of P −1A appears compressed (see Fig. 7), the preconditioning does
not improve the convergence of the iterative methods, see Table VI. This
example illustrates the limitations of the preconditioner (2).

In summary, the preconditioner defined by discretizing the differential
operator with constant coefficients (2) significantly improves the speed of
convergence of iterative methods, provided the coefficients vary moderately
and are bounded away from zero. When both coefficients a and b change
signs, the preconditioner does not appear to be useful.

It is worth mentioning that our results in Tables I–VI appear to indi-
cate the accuracy of the numerical solution depends on the preconditioner.
In fact, this is not the case. The reason for the varying accuracy is that
the residual checked by the iterative methods for convergence is that of
the preconditioned system, which depends on the choice of the parameter
ν, and that we terminate the iterative methods when the residual reaches
the tolerance (= 10−9N in all our tests). We have tested the same itera-
tive methods with or without preconditioning using stricter convergence
criteria, and the accuracy of the various approximations is comparable,
depending only on the discretization parameter N . The preconditioning by
no means compromises the accuracy of the numerical solution when con-
vergence is reached.
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Table V. Example 5 Number of Iterations and Errors

N 16 32 64 128 256

BiCGStab(2)
No P.C. 44 114 251 ** **

2.0e-007 5.4e-007 3.1e-006 2.1e-004 6.7e-003
ν =0.5 8 9 8 50 **

3.1e-008 4.1e-007 2.8e-006 1.7e-005 1.7e-003
ν =1 6 6 6 6 709

9.6e-009 8.7e-007 2.5e-007 9.6e-006 3.0e-005
ν =10 22 25 25 25 71

1.2e-007 6.5e-007 2.4e-006 1.0e-005 4.0e-005

BiCGStab(8)
No P.C. 10 26 56 ** **

1.9e-007 4.7e-007 1.1e-006 1.9e-003 1.6e-002
ν =0.5 2 2 3 10 **

2.6e-008 8.2e-007 2.5e-007 1.5e-005 3.1e-004
ν =1 2 2 2 2 12

1.7e-011 2.6e-009 8.1e-008 5.0e-006 1.7e-005
ν =10 6 6 7 16 39

1.1e-008 1.0e-006 2.1e-007 4.8e-006 2.5e-005

GMRes(10)
No P.C. 21 48 99 ** **

1.1e-007 1.2e-006 3.7e-006 3.6e-005 1.5e-003
ν =0.5 3 4 3 ** **

4.8e-008 3.6e-008 2.1e-006 4.1e-005 4.2e-003
ν =1 2 3 2 2 **

1.8e-007 8.4e-009 9.2e-007 7.8e-006 7.3e-005
ν =10 10 10 10 10 **

4.9e-008 1.3e-006 2.1e-006 1.0e-005 1.5e-004

CGNR
No P.C. 97 196 386 ** **

1.5e-006 5.7e-006 2.8e-005 8.5e-002 2.6e+00

3. COMPUTATION OF INVARIANT TORI

3.1. Formulation and Linearization

To understand the dynamics of a differential equation, one is often
interested in so-called invariant manifolds. A solution trajectory starting
on this manifold will always remain on the manifold. Examples of such
manifolds are stationary solutions (a fixed point), or invariant circles (a
periodic solution). Here we attempt to compute an invariant torus, still
one of the simpler types of such manifolds. Indeed, often we have a
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Fig. 6. Example 5. Eigenvalues of M (left) and P −1M with ν =1 (right). N =16.
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Fig. 7. Example 6. Eigenvalues of M (left) and P −1M with ν =1 (right). N =16.

parameter in our differential equation, and as this parameter increases,
one may observe a bifurcation sequence from stationary solution to peri-
odic solution to invariant torus.

Our methods are based on solving an associated partial differential
equation (PDE), an approach first suggested for computation by Dieci
et al. [7]. We consider the autonomous first-order system of ODEs

dw

dt
=F(w), w ∈W ⊂ IRn, (9)

where F is a smooth mapping from W to IRn. We assume that a smooth
invariant manifold Ω ∈W exists. As in [7] we assume (9) is of the form

θt =f (θ, r), rt =g(θ, r) (10)

with θ ∈ U ⊂ IRp, r ∈ V ⊂ IRq , and that the manifold Ω can be written
as {(θ,Λ(θ)) : θ ∈U}, where Λ : U →V , i.e., Ω can be parameterized over
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Table VI. Example 6 Number of Iterations and Errors

N 16 32 64 128 256

BiCGStab(2)
No P.C. 5 8 12 21 46

5.0e-008 2.5e-007 3.7e-007 3.7e-007 1.1e-005
ν =0.5 14 155 ** ** **

1.0e-007 1.8e-006 1.0e-002 1.3e-001 1.1e+000
ν =1 10 38 ** ** **

2.4e-009 3.7e-007 1.0e-002 1.2e-002 9.5e-002
ν =10 5 11 17 62 **

7.0e-008 6.9e-008 1.6e-006 7.7e-006 1.1e-003

BiCGStab(8)
No P.C. 2 2 3 5 8

1.5e-013 3.1e-007 9.4e-007 3.4e-006 3.4e-005
ν =0.5 4 18 ** ** **

8.2e-010 1.5e-006 3.3e-002 2.1e-002 3.2e-001
ν =1 2 8 ** ** **

1.1e-007 7.8e-007 6.6e-006 2.3e-002 6.6e-002
ν =10 2 3 4 13 125

1.8e-012 3.0e-007 8.2e-007 5.6e-006 2.5e-005

GMRes(10)
No P.C. 2 3 4 7 13

1.2e-008 2.3e-007 7.5e-007 4.3e-006 2.4e-005
ν =0.5 6 59 ** ** **

8.8e-008 1.4e-006 1.2e-002 4.7e-002 3.2e-001
ν =1 4 17 ** ** **

7.1e-009 6.4e-007 8.5e-004 4.7e-003 7.1e-002
ν =10 2 4 6 20 **

3.7e-008 8.7e-008 1.2e-006 6.9e-006 3.7e-005

CGNR
No P.C. 11 13 16 35 58

2.8e-007 8.0e-007 2.0e-006 2.6e-006 1.9e-005

U . This is a severe restriction, even though the implicit function theorem
states that such a splitting is always possible locally.

To compute Λ, i.e. Ω, one has to solve the system of nonlinear PDEs

JΛ(θ)f (θ,Λ(θ))=g(θ,Λ(θ)), θ ∈U, (11)

where JΛ denotes the Jacobian matrix of Λ, with appropriate boundary
conditions (see [7]). This procedure can be seen as a natural extension of
phase space analysis for systems of ODEs in IR2.
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Since we assume that U is a torus, a manifold without boundary,
the boundary conditions for (11) are periodic in each component of the
unknown function r.

We denote by

T p :=
{
θ = (θ1, ..., θp) : θj ∈ IR mod 2π

}
(12)

the p-dimensional torus. We rewrite the PDE (11) for the case, where U
can be identified with T 2 and where V = IR, i.e., the function r is a scalar.
Equation (11) simply becomes

f1(θ1, θ2, r)
∂r

∂θ1
+f2(θ1, θ2, r)

∂r

∂θ2
=g(θ1, θ2, r), on [0,2π ]2, (13)

r(θ1,0)= r(θ1,2π), r(0, θ2)= r(2π, θ2). (14)

We adopt the standard Newton iteration to solve this nonlinear first
order PDE. Let r(0) be an initial guess of the unknown function r. Then
the Newton update r(n) = r(n−1) +u(n) is determined by a PDE of the form
(1) as follows

a(n)(θ1, θ2)
∂u(n)

∂θ1
+b(n)(θ1, θ2)

∂u(n)

∂θ2
+ c(n)(θ1, θ2)u

(n) =g(n)(θ1, θ2), (15)

where

a(n) =f1(r
(n−1)), b(n) =f2(r

(n−1)),

c(n) = ∂f1
∂r

(r(n−1)) ∂r(n−1)

∂θ1
+ ∂f2

∂r
(r(n−1)) ∂r(n−1)

∂θ2
− ∂g

∂r
(r(n−1)),

g(n) =g(r(n−1))−f1(r
(n−1)) ∂r(n−1)

∂θ1
−f2(r

(n−1)) ∂r(n−1)

∂θ2
.

In the remainder of this paper we will restrict ourselves to the compu-
tation of the invariant 2–torus for the forced Van der Pol oscillator [4–6,
17]

ẍ −λ(1−x2)ẋ +x =β cos(ωt). (16)

Changing to polar co-ordinates, Eq. (16) may be rewritten as an autono-
mous first–order system of ordinary differential equations

θ̇1 =ω

θ̇2 =−1+ 1
r

(λp(r cos θ2) sin θ2 +β cos θ2 cos θ1)

ṙ =−λp(r cos θ2) cos θ2 +β sin θ2 cos θ1,

=: f1(θ1, θ2, r),

=: f2(θ1, θ2, r),

=: g(θ1, θ2, r),

(17)
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where

p(x)= x3

3
−x.

For appropriate constants λ,β, and ω, the existence of an invariant 2–
torus for (17) can be shown [12]. In our computations, in each Newton
step we effectively have to solve (15) for the specific example (17).

3.2. Numerical Results for the Nonlinear Problem

In this section, we present numerical results from the computation of
the invariant torus for the Van der Pol oscillator. The bifurcation param-
eters are set as ω = √

0.84, β = 0.32, and λ = 0.4, which yields a smooth
invariant manifold. For the Newton iteration, we choose r(0) =2 as the ini-
tial guess, and we stop the iteration, when the 2-norm of the difference
between two consecutive Newton iterates falls below tolnt = N ∗ 10−8. To
solve the linear system in each Newton step, we use our iterative meth-
ods with and without preconditioner. Figure 8 shows the results from a
typical Newton step (namely step 4), indicating the relative performance
of the iterative methods we have tested, and giving an idea of the effect
of the preconditioner. GMRes(k) gives a smoother convergence, but the
BiCGStab(�) methods converge faster. The convergence criterion for the
iterative methods is for the 2-norm of the residual to drop by a factor
of N ∗ 10−8 from the initial residual, or to drop below an absolute tol-
erance of N ∗ 10−13. We would like to point out, however, that this cri-
terion is set for the purpose of studying the performance of the iterative
solvers. Actually, one may set a weaker criterion, taking advantage of the
fact that in the intermediate Newton steps the linear systems need not
be solved to high accuracy, and hence save computational work (see e.g.
[23]).

As demonstrated in Sec.2.4, the performance of iterative methods
depends on the variation of the coefficients in (1). While in (15) a(n) =ω

for all n, we plot in Fig. 9 the graph of the coefficients b(n) and c(n) for
n=7, when the Newton iteration reaches convergence. This gives a rough
idea what these coefficients look like. We also display in Fig. 10 the dis-
tribution of the eigenvalues of M corresponding to the last step of the
Newton iteration. It is easy to see that the eigenvalues of M are evenly
distributed in a narrow, long band parallel to the imaginary axis. There-
fore, it is not surprising that even for small values of N , the unprecondi-
tioned iterative methods converge very slowly.

Next we examine the effectiveness of the preconditioner defined in (6),
whose performance depends on the choice of the parameter ν. We again
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Fig. 8. Convergence history of the iterative methods BiCGStab(2), BiCGStab(8),
GMRes(10), and CGNR for N = 32 and N = 64. Original system (left), preconditioned
(right). The residuals are plotted against the workload, i.e., matrix-vector products.
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Fig. 9. Coefficients b(n) and c(n) in Eq.(15), n = 7 at which the Newton iteration reaches
convergence.

set the parameter ν =γ c̄, where c̄ is the average of the entries of matrix C

in (4). In Fig. 11 we plot the eigenvalues of the coefficient matrix P −1M

for the preconditioned system with N =32.
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Comparing the plots in Figs. 10 and 11, it is clear that the spectrum
of P −1M is compressed in the imaginary direction. As γ is increased from
0.1 to 10, the spectrum changes from being distributed across the imag-
inary axis to being clustered away from the imaginary axis, a desirable
configuration for fast convergence of iterative methods. These patterns
suggest an efficient preconditioner with a parameter γ ∈ (1,5). To verify
this, we plot the convergence history of the preconditioned BiCGStab(2)
and GMRes(10) with the above parameters in Fig. 12. The results con-
firm that the iterative methods converge faster for preconditioned systems
whose coefficient matrix has more compact eigenvalue distributions. Fur-
thermore, the convergence rate can be altered by tuning the parameter γ .
It appears that γ =3 is a good choice for the parameter in this case. The
optimal value of γ , however, depends on the size N of system (4) and, to
a lesser extent, on the particular Newton step from which it is derived.

In general, choosing larger values for γ pulls the eigenvalues of P −1M

further from the origin, while for larger N , the eigenvalues of M get closer
to the imaginary axis. To avoid the situation that P −1M has eigenvalues
across the imaginary axis, it is judicious to choose a larger γ when N

increases. For example, in our computation with N = 64, the parameter
γ = 10 gives faster convergence than γ = 1 does. Figure 8 illustrates the
convergence histories for the preconditioned methods.

Finally, we list in Table VII the number of iteration used by vari-
ous iterative methods for each step of the Newton iteration, for N = 32
and 64. When moving to N = 128, BiCGStab(8) becomes vastly superior
to the other methods (see also [23]). Preconditioning provides substantial
speed-up for BiCGStab(8), more pronounced in the earlier Newton itera-
tions than in the later. The overall speed-up is about a factor of 4.
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4. CONCLUSIONS

We present an effective preconditioner for the iterative solution of
the linear algebraic system arising from Fourier spectral discretization of
a class of first order PDEs. We test the preconditioner with the itera-
tive solvers BiCGStab(�) and GMRes(k). In the case of constant coeffi-
cient c in (1), the unpreconditioned methods and CGNR perform well;
CGNR converges linearly with respect to N . When the coefficient c varies,
however, the preconditioned BiCGStab(�) and GMRes(k) methods are sig-
nificantly faster than their unpreconditioned counterparts, and also much
faster than the unpreconditioned CGNR method.

We apply the proposed preconditioner to the computation of an
invariant torus. The dynamical system is reduced to a nonlinear first-order
PDE after parametrization. This PDE with periodic boundary conditions
is solved by a Newton iteration; in each Newton step a linear PDE of the
form (1) is discretized with a Fourier spectral collocation method. In this
calculation a large structured system of linear algebraic equations must be
solved. Our proposed preconditioner significantly improves the efficiency
of iterative methods for this linear system of equations. This allows a more
detailed study of the evolution of the torus as parameters in the dynamical
system change and approach critical values where the torus breaks down.

ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) Discovery Grant OGP0036901,
an NSERC Postgraduate Fellowship, and by National Science Foundation
USA (NSF) grant DMS-0209313.

REFERENCES

1. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral Methods
in Fluid Dynamics, Series of Computational Physics, Springer–Verlag, Heidelberg, Berlin,
New York.

2. Cao, W., Haynes, R. D., and Trummer, M. R. (2000). Preconditioning spectral methods
for first-order equations, Copper Mountain Conference on Iterative Methods.

3. Chan, R. H., Yip, A. M., and Ng, M. K. (2000). The best circulant preconditioners for
Hermitian Toeplitz systems. SIAM J. Numer. Anal., 38, 876–896.

4. Dieci, L. and Bader, G. (1994). Solution of the systems associated to invariant tori
approximation. II: Multigrid methods. SIAM J. Sci. Comput. 15, 1375–1400.

5. Dieci, L., and Bader, G. (1995). Block iterations and compactification for periodic block
dominant systems associated to invariant tori approximation. Appl. Numer. Math. 17,
251–274.



Preconditioning for a Class of Spectral 371

6. Dieci, L., and Lorenz, J. (1992). Block M-Matrices and computation of invariant tori,
SIAM J. Sci. Stat. Comput. 13, 885–903.

7. Dieci, L., Lorenz, J., and Russell, R. D. (1991). Numerical calculation of invariant tori.
SIAM J. Sci. Stat. Comput. 12, 607–647.

8. Faber, V. Manteuffel, T. and Parter, S. V. (1990). On the theory of equivalent operators
and application to the numerical solution of uniformly elliptic partial differential equa-
tions, Adv. in Appl. Math. 11, 109–163.
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