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Abstract Smart well technologies, which allow remote control of well and pro-
duction processes, make the problem of determining optimal control strategies a
timely and valuable pursuit. The large number of well rates for each control step
make the optimization problem difficult and present a high risk of achieving a
suboptimal solution. Moreover, the optimal number of adjustments is not known
a priori. Adjusting well controls too frequently will increase unnecessary well man-
agement and operation cost, and an excessively low number of control adjustments
may not be enough to obtain a good yield. In this paper, we explore the capabil-
ity of three derivative-free algorithms and a multiscale regularization framework
for well control optimization over the life of an oil reservoir. The derivative-free
algorithms chosen include generalized pattern search (GPS), particle swarm opti-
mization (PSO) and covariance matrix adaptation evolution strategy (CMA-ES).
These algorithms, which cover a variety of search strategies (global/local search,
stochastic/deterministic search), are chosen due to their robustness and easy par-
allelization. Although these algorithms have been used extensively in the reser-
voir development optimization literature, for the first time we thoroughly explore
how these algorithms perform when hybridized within a multiscale regularization
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framework. Starting with a reasonably small number of control steps, the control
intervals are subsequently refined during the optimization. Results for the exper-
iments studied indicate that CMA-ES performs best among the three algorithms
in solving both small and large scale problems. When hybridized with a multi-
scale regularization approach, the ability to find the optimal solution is further
enhanced, with the performance of GPS improving the most. Topics affecting the
performance of the multiscale approach are discussed in this paper, including the
effect of control frequency on the well control problem. The parameter settings for
GPS, PSO, and CMA-ES, within the multiscale approach are considered.

Keywords Well Control · Production Optimization ·Derivative-Free Algorithms ·
Multiscale Approach

1 Introduction

Determining the well production and injection rates is of paramount importance
in modern reservoir development. The decision is difficult since the optimal rates
depend on the heterogeneity of the rock and liquids, the well placements and other
parameters. Indeed, these properties and input parameters are coupled in a highly
nonlinear fashion. Moreover, the optimal production and injection rates are usually
not constant throughout the life cycle of reservoir. The oil saturation distribution
changes during the well injection and production processes. This will then affect
the optimal production and injection rate for each well.

Well control planning can be formulated as an optimization problem, using
economic or cumulative oil production as the objective function. The well rates
or bottom hole pressures at different times are the optimization variables. Many
optimization algorithms have been investigated to solve such problems. These
algorithms can be broadly placed in two categories: derivative-based algorithms
and derivative-free algorithms.

Derivative-based or gradient-based algorithms, take advantage of the gradient
of the objective function to guide their search. This type of algorithm, commonly
used in well control optimization, includes steepest ascent, conjugate gradient,
and sequential quadratic programming methods [48,66,42]. Gradients of the ob-
jective function may be calculated by using an adjoint equation. This is an inva-
sive approach, requiring a detailed knowledge of mathematics inside the reservoir
simulator [13,10,4,70,8]. Other ways to approximate the gradients include finite
difference perturbation [66,71], or the simultaneous perturbation stochastic ap-
proximation [66,43]. These algorithms assume a certain degree of smoothness of
the objective function with respect to the optimization variables. Derivative-based
algorithms are potentially very quick to converge but sometimes fall into local
optimal.

Derivative-free algorithms can be subdivided into local search methods and
global search methods. Local derivative-free algorithms include generalized pat-
tern search (GPS) [35], mesh adaptive direct search (MADS) [38,27], Hooke-Jeeves
direct search (HJDS) [20], ensemble-based optimization (EnOpt) [14,15,19,49,11,
12], covariance matrix adaptation evolution strategy (CMA-ES) [7,45], and so on.
These methods have strong ability to find accurate optima in a local space, but
may face some difficulties in finding global optima, especially when a good initial
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guess is not available. Global derivative-free algorithms search through the entire
space and provide techniques to avoid being trapped in local optima. Examples
of global search algorithms include genetic algorithms (GAs) [2], particle swarm
optimization (PSO) [37], and differential evolution (DE) [60,9]. Although these al-
gorithms are robust and easy to use, they often require more function evaluations
than local search and derivative-based algorithms to converge. However, most of
these algorithms parallelize naturally and easily, which make their efficiency satis-
factory [16]. Recently, some hybridization of these techniques such as PSO-MADS
[35,37,34], multilevel coordinate search (MCS) [36], etc., have been developed
and applied in well placement and/or well control optimization problems. These
methods provide global search capabilities in addition to local convergence. The
performance of MCS for well placement and control optimization is discussed in
[67].

The optimization algorithms mentioned above can be further classified as either
stochastic or deterministic. Stochastic methods use information from the previous
iterations and a random component to generate new search points. The random
component of the algorithm makes it more likely to avoid local optima, but it
may also make the control of solution quality difficult, especially with a limited
computational budget. The stochastic algorithms from the above list are MADS,
CMA-ES, GA, PSO, EnOpt and DE. Deterministic methods have no random
element. For a given problem, deterministic methods will give the same results for
each trial, assuming the same initial guess. GPS, HJDS, and MCS are examples
of deterministic algorithms.

All the above mentioned algorithms have been used in well control optimization
and/or well placement optimization problems. The performance of the algorithms
are problem-dependent. Some of the algorithms, like GPS (1960s), GA (1960s),
and PSO (1990s), have been around for decades, and have been used in petroleum
industrial problems for a relatively long time. People have accumulated a great
deal of experience through case studies. CMA-ES, developed in the 2000s [30],
was first used in petroleum related optimization problems only in 2012 [7]. Though
CMA-ES performed very well in well placement and control optimization problems
[56,53,7], to date the application of CMA-ES to well control optimization is still
limited.

Although many optimization algorithms have been used, well control optimiza-
tion is still a challenging problem and an active area of research. The number of
optimization variables is large in many real–life scenarios. The required number
of function evaluations will rise sharply with the increase in the number of vari-
ables. A single function evaluation requires one reservoir simulation which is often
very demanding in terms of CPU time. The non-convex, non-smooth and multi-
modal objective surface further increases the optimization difficulty. To address
these challenges, researchers have made many valuable contributions. In addition
to the above optimization algorithm studies, several model predictive control and
boundary control approaches have been applied to well production control, see
[32,58]. Developing surrogate models by model reduction techniques which replace
high-fidelity computational models (usually the numerical simulator) during the
optimization, can save computational costs by sacrificing some model accuracy,
see [47,46,59,1,63,41,26].

Furthermore, it is difficult to (automatically or a priori) choose a reasonable
frequency for well control; an excessively low number of control adjustments may
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not truly optimize oil recovery. Adjusting each well control too frequently imposes
an unrealistic control burden on operations, increasing the total well manage-
ment cost. Moreover, imposing a high number of control adjustments increases
the complexity of the optimization problem so much that there is a high risk of
optimization algorithms becoming trapped at local optima and hence missing the
optimal strategy [57]. The control problem can become ill-posed, resulting in a
“nervous” control strategy. In that case many different control strategies will re-
sult in (nearly) identical objective function values [21]. Multiscale regularization
approaches have been developed to address these problems. The main idea of the
multiscale approach is to start the optimization process with a very coarse control
frequency (and thus, with a small number of control variables) and refine the num-
ber of control adjustments successively. The solution at the coarse-scale is used as
the initial guess of controls for the next finer scale optimization [44,57,49]. The
approach is called “multiscale” since the temporal scale of each control time step
can range from years to days during the well production optimization problem. It
is notable that this definition of multiscale is some what inconsistent with how it
is used in other application areas. For example, multiscale refers to macroscopic,
mesoscopic, and microscopic scales in modeling flow in porous media.

In the past, a number of multiscale regularization approaches have been inves-
tigated for well control optimization. The successive-splitting multiscale approach
(SS-MS), also known as the ordinary multiscale approach [44,57], is the simplest
strategy. It splits one control step into two equal control steps to construct a finer
control problem to optimize. It is worth noting that in the work of Lien et al.,
they also refine in the spatial direction by initially grouping the injector and pro-
ducer segments and then gradually splitting in space. The refinement indicator
multiscale approach (RI-MS), was also proposed by Lien et al. [44]. RI-MS uses
the magnitude of the components of the gradient of the objective to determine
refinement indicators. The algorithm progressively increases the number of vari-
ables using the refinement indicators to choose the most-efficient partitioning of
the current control steps to increase the value of the objective function. Hierar-
chical multiscale approach (Hi-MS), was devised and analysed by Oliveira et al.
[49]. It is similar to SS-MS, but with an additional merge operation. The merge
operation can merge existing control steps by considering the difference between
well controls at two consecutive control steps and/or the gradient of the objective
function with respect to the well controls. Most recently, Oliveira et al. proposed
RHi-MS. The difference between RHi-MS and Hi-MS is that RHi-MS determines
the split based on the refinement indicators.

The multiscale approach is a framework, which must be combined with an
optimization algorithm to solve the well control optimization problem. Lien et al.
combine SS-MS with the steepest-ascent method (a gradient-based optimization
algorithm) to solve well control optimization problem. Shuai et al. [57] tested the
performance of SS-MS when combined with EnOpt and BOBYQA (two derivative-
free algorithms). Oliveira et al. [49,50] tested the performance of SS-MS, RI-MS,
and Hi-MS when combined with the steepest-ascent method and EnOpt. Though
Shuai et al. [57] and Oliveira et al. [49] tested the performance of multiscale ap-
proaches with derivative-free algorithms EnOpt and BOBYQA, we still know rel-
atively little about how multiscale approaches and common derivative-free algo-
rithm perform for well control optimization problems. The specific choice of the
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optimizer affects the performance of the multiscale framework significantly and
needs further investigation.

Given the prevalence of derivative-free algorithms for well control optimization
and the need for a multiscale approach for problems with a large number of con-
trol variables, we consider the natural marriage of the two philosophies. For the
multiscale approach, we use SS-MS since it is derivative-free, straightforward and
easy to implement. Combining SS-MS with a derivative-free optimization algo-
rithm avoids the gradient calculation or estimation. In this paper, we first discuss
the effects of control frequency on well control optimization, including the effects
on the production and the effects on the control strategy. Then we combine the
SS-MS with three typical derivative-free optimization algorithms for the well con-
trol problem. We choose a deterministic local search method – generalized pattern
search (GPS), a stochastic local search method – covariance matrix adaptation
evolution strategy (CMA-ES), and a stochastic global search method – particle
swarm optimization (PSO). The performance of each algorithm is analyzed us-
ing several reservoir models as test cases. Although GPS, PSO, and CMA-ES are
widely used in petroleum engineering and many other areas, to the best of our
knowledge there has been no attempt to combine these methods with a multiscale
approach to solve the well control optimization problem. The influence of the two
parameters, the split factor and the initial number of control steps, on the perfor-
mance of SS-MS is also investigated. Moreover, we also discuss the performance of
our SS-MS derivative-free approach in a parallel computing environment, a study
which appears to be missing from the literature.

This paper is structured as follows. Section 2 describes the well control problem
formulation. Section 3 gives detailed description of our multiscale approach and
the framework of combining the multiscale approach with the three optimization
algorithms. In Section 4, we detail the computational methodology and describe
the reservoir models used in this paper. Section 5, we present the results and
discussion for the experiments. Finally, in Section 6, we provide a summary and
conclusions of this work.

2 The well control optimization problem

In this section, we describe the well control optimization problem, including the
objective function of interest, the control variables and the imposed constraints.

The typical objective function associated with a well control problem evaluates
an economic model and takes into account different costs such as the price of oil,
the costs of the injection and the production of water. Another alternative is to
use the cumulative oil production or the barrel of oil equivalent [7]. In this work,
the objective function of interest is the net present value (NPV) of a time series
of cash flows. For the three-phase flow of oil and water, the NPV is defined by

NPV (u) =

Nt∑
k=1

[
∆tk

(1 + b)
tk
τ

(
rgpq

k
gp(u) + ropq

k
op(u)

− cwpq
k
wp(u)− cwiq

k
wi(u)

)]
,

(1)
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where u is set of control variables during the reservoir’s lifetime; qk
gp, qk

op and

qk
wp, respectively, denote the average gas rate, the average oil rate and the average

water rate for the nth time step; qk
wi is the average water-injection rate for the

kth time step; rgp and rop are the gas and oil revenue; cwp is the disposal cost of
produced water; cwi is the water injection cost; Nt is total number of time steps;
tk is the time at the end of kth time step; and ∆tk is kth time step size. The
quantity τ provides the appropriate normalization for tk, e.g., τ = 365 days. The
quantity b is the fractional discount rate.

The optimization variables u could contain the well bottom hole pressures or
the well liquid rates. In this work, we control wells by specifying the liquid rates.
The vector u is an Nu-dimensional column vector, where Nu is the total number
of well controls. Assuming each well has the same frequency of control steps, then
Nu = Nt ·Nw, where Nw is the total number of wells and Nt is the total number
of control adjustments.

Well control optimization during the reservoir life cycle can be expressed as
the following mathematical problem:

max NPV (u) , (2)

subject to ulb ≤ u ≤ uub, (3)

c (u) ≤ 0, (4)

e (u) = 0, (5)

where NPV (u) is the objective function given by equation (1). And, in order,
equations (3–5) are the bound, inequality, and equality constraints (if any) im-
posed on the problem.

The bound constraints define the minimum and maximum values for control
variables (i.e. well rates for problems in this paper). The inequality constraints
include the limits on well bottom hole pressures, well water cut limits, facility
constraints such as field-level production/injection limits, etc. The equality con-
straints usually are the flow equation constraints, which ensure the reservoir flow
dynamics satisfy the governing reservoir flow equations.

Though there are large number and various types of constraints, we assume
only bound constraints are imposed explicitly for our well control problems. This
makes sense because: 1) the flow equation constraints are always satisfied since we
use a reservoir simulator to calculate the objective function value. 2) some com-
plex constraints, for example, the well water cut limits may be naturally enforced.
If the water cut of a well is very high, the NPV will generally not be high. 3)
the well bottom hole pressure constraints are imposed implicitly in our problems.
Using the keywords setting in the reservoir simulation data file, if the bottom hole
pressure is over the maximum limit for a injector, or under the minimum limit for
a producer, the well will be controlled by the bottom hole pressure automatically,
until the well pressure constraints are satisfied.

We use Eclipse 100 [25], a commercial reservoir simulation software from Schlum-
berger Ltd., to calculate the relevant time-dependent production information for
all experiments in this paper.

For an optimization problem, the size of the search space decreases as the
number of constraints increase, however, imposing constraints can make the search
space more complicated and the optimization problem more difficult to solve. How
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to balance the size and complexity of search space with the realism of the prob-
lem by choosing appropriate constraints needs further research, but is outside the
scope of this paper.

3 A multiscale framework

In production optimization, specifying the frequency of needed well control ad-
justment is a challenge. On one hand, a high frequency adjustment of control pa-
rameters imposes unrealistic burden on operations, leading to an increase in well
management costs. In addition, from an optimization perspective a high frequency
of control adjustments implies an explosion in the number of control variables, re-
quiring a great amount of computation and time to get an optimal solution. This
may be especially true for derivative-free algorithms, which may need many more
function evaluations than gradient-based algorithms. Many degrees of freedom also
increase the risk of an optimization algorithm being trapped in a local optimum.
On the other hand, imposing too few control adjustments may not truly optimize
oil recovery.

Multiscale regularization provides a way to address the complexity of the op-
timization problem with a large number of control adjustments and also avoids
the need to guess an appropriate number of control adjustment steps a priori. The
multiscale approach starts with a coarse number of control steps and successively
increases the frequency of control adjustments using the coarse-scale solution as
the initial guess for the next finer scale optimization [44,49,57]. The refinement
process is terminated when a specified stopping criteria is satisfied. For example,
a maximum number of control adjustments or a minimum allowable change in the
objective function could be imposed.

To the best of our knowledge, three related multiscale approaches have been
investigated for the well control optimization problem. The first approach, first
seen in [44], is referred to as ordinary multiscale or successive-splitting multiscale
[57] . The optimization starts with a coarse number of control adjustments and
subsequently splits each control step into two new ones at every iteration. The
second optimization strategy, also proposed by Lien et. al. [44], uses the magni-
tude of the components of the gradient of the objective to determine refinement
indicators. The algorithm progressively increases the number of variables using
the refinement indicators to choose the most-efficient partitioning of the current
control steps to increase the value of the objective function. The third approach
is called the hierarchical multiscale method [49,50]. It is similar to the ordinary
multiscale approach in [44,57], but the algorithm can also merge existing control
steps by considering the difference between well controls at two consecutive control
steps and the gradient of the objective function with respect to the well controls.

The goal of the present work is to explore the feasibility of improving the perfor-
mance of derivative-free algorithms in solving large scale well control optimization
problems by using a multiscale approach. We choose the successive-splitting multi-
scale approach because the other two methods, the refinement indicator multiscale
approach and the hierarchical multiscale approach, require gradient information of
the objective function – information we do not assume is available. Furthermore,
one recent study compared the sophisticated refinement indicator and hierarchical
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multiscale approaches with the simpler successive-splitting approach and showed
similar performance [49].

Before we introduce our modified approach, we take a look at the original
successive-splitting multiscale approach. As Shuai et al. describe in [57], the successive-
splitting multiscale algorithm generally loops over the following steps:

1) INITIALIZATION One control step for each well (initial steps n0 = 1); The
number of unknowns is equal to the number of wells; Initial guesses of control
are assigned to each well.

2) OPTIMIZATION Solve the well control optimization problem using an opti-
mization algorithm.

3) SPLITTING Split each control step into two steps of equal length (split factor
ns = 2); This doubles the number of control variables; Use the solution from
step 2) as the initial well control; Go to step 2).

Our experience indicates the efficacy of a multiscale approach depends on two
key parameters: the number of control steps for each well at the beginning of the
optimization (i.e. the number of initial steps n0) and the multiplicative increase
in the number of control steps at every iteration (i.e. the split factor ns). As
mentioned, the successive-splitting multiscale approach used in [57] starts the op-
timization procedure by finding the optimal control strategy assuming one control
step (n0 = 1). Subsequent optimizations split the number of control steps by a
fixed split factor ns = 2. We show that this configuration of the two parameters is
not always the most efficient configuration. On one hand, the optimal well control
strategies with a very coarse parametrization may be dramatically different than
with a fine parametrization (or large number of control adjustments). Hence the
solution found by a very coarse parametrization is not useful as an initial guess
to find the optimal fine parametrization or will require many successive splittings.
This observation has to be balanced with the realization and motivation that the
problem with a large number of control adjustments is too difficult to solve imme-
diately. The split factor is the key to balance the difficulty of optimization problem
at each scale and the total number of scales. With a higher split factor, less scales
are needed to reach the maximum number of control steps. We will show this is
sometime more efficient.

Based on the above, in addition to coupling the multiscale approach with
commonly used derivative free algorithms, we consider the effect of the choice
of the initial number of control number steps n0 and the choice of ns in the
overall efficiency of the multiscale optimization process. In our modified multiscale
approach, we leave the choice of the initial number of steps and the choice of the
split factor to the user. We start the multiscale algorithm with a reasonably small
value of n0 – the initial number of control steps, and then find the associated
optimal controls. After maximizing objective function on the basis of the initial
control steps, we split each control step into several steps depending on the split
factor ns as

xi+1(n) = xi∗(dn/nse), n = 1, 2, · · · , Nv × ns, (6)

where xi+1(n) is the nth variable in the initial guess for the (i + 1)th scale;
xi∗(dn/nse) is the dn/nseth variable in the optimum solution for the ith scale,
d e is the ceiling function and Nv is the total number of variables for the ith scale.
With this formula, the total number of variables for the (i + 1)th scale becomes
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Nw × ns, and every ns variables for the (i+ 1)th scale use the optimum solution
of the ith scale. This process of splitting the control steps and performing a new
optimization is continued until the maximum number of control steps is reached.

Fig. 1 gives an illustration of how the successive-splitting multiscale approach
splits the control steps to give the next finer scale. In this figure, we show the
resulting number of control steps for two choices of ns (ns = 2 and ns = 4)
assuming the number of initial steps is n0 = 2.

Control step=2

ns=2 ns=4

Control step=4 Control step=8

Fig. 1 Control steps split by the successive-splitting multiscale approach.

Our well control optimization procedure using a derivative-free multiscale ap-
proach is described by the steps given in Algorithm 1. A flow chart of the algorithm
is given in Fig. 2.

Algorithm 1 The multiscale approach with derivative-free algorithms
select solver: GPS, PSO or CMA-ES
set initial control steps for each well n0, and the split factor ns

set initial guess x0

iteration i← 0
while not (global stopping criteria reached) do

while not (scale stopping criteria) do
solve x∗ = argmax NPV (x)

end while
let xi∗ = x∗
split, set control steps for each well ni+1 ← ni × ns

update the initial guess, xi+1(n) = xi∗(dn/nse), n = 1, 2, · · · , Nw × ns

test the scale stopping criteria
end while

We consider three derivative-free optimization algorithms in the multiscale
approach: GPS, PSO, and CMA-ES. These are typical derivative-free, black-box
optimization algorithms. Each method has distinct characteristics and all have
been applied successfully to solve reservoir development problems as mentioned in
the introduction.

GPS is a deterministic local search algorithm. The algorithm samples at a set
of points on a grid around the current best point, looking for a point where the
value of the objective function is better than the current value. The population
size for GPS is decided automatically by the algorithm based on the problem di-
mension. For a D-dimensional problem, the population size equals 2D is using
a maximal positive basis. For a further description of GPS and its application to
well control optimization, see [3,38,5,62,69]. PSO is a population-based stochastic
global search method. The PSO search mechanism mimics the social behaviour of
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Fig. 2 Flow chart of well control optimization with multiscale approach and derivative-free
algorithms.

biological organisms such as a flock of birds, see [40]. PSO initially chooses a pop-
ulation of candidate solutions (called a swarm of particles). These particles move
through the search space in search of function improvement according to a random
rule which updates each particle’s position. The population size is generally varied
from 20 to 100 and is usually decided by the user. For a more complete description
of PSO and reservoir applications, see [40,52,51,37,64,33,18,17,54,22]. CMA-ES
is a population-based stochastic optimization algorithm. Unlike GA, PSO, and
other classical population-based stochastic search algorithms, candidate solutions
of CMA-ES are sampled from a probability distribution which is updated itera-
tively. Like GPS, the population size for CMA-ES depends only on the problem
dimension. 4 + b3 ln(D)c solutions is generated initially for a D-dimensional prob-
lem. This algorithm performs better on the benchmark multimodal functions than
all other similar classes of learning algorithms, see [68]. A more detailed description
of CMA-ES and its applications can be found in [7,23,29,68]. All three algorithms
do not directly use or require the gradient of the objective function to be specified
(or even to exist). Hence they can be used on functions that lack smoothness,
those that are not continuous or differentiable.

At early scales of the algorithm, optimizations are performed with less strin-
gent convergence tolerances to find an approximate solution. The tolerances are
made smaller as the algorithm proceeds, using the smallest tolerance at the last
scale. With this approach, we reduce the computational cost at early scales. The
tolerance settings for the experiments can be found in Section 5.

Due to the complexity of the well control optimization problems, the objective
functions are generally nonconvex with many minima, maxima, and saddlepoints.
For these types of problems, GPS and CMA-ES are guaranteed to converge to
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locally optimal solutions and can provide useful approximate solutions for the
global optimization problems ([5,62,69,68]). PSO, with the stochastic movement
of the population, can reduce the chance of getting trapped at an local optimum
([40,64]). However, PSO does not guarantee an optimal solution is ever found in
practice.

In the multiscale framework, a sequence of well control optimization problems
are constructed by increasing the number of variables during the optimization pro-
cess. Each problem is solved by an optimization algorithm. The optimum found
at one scale is used as the initial guess for the problem at the next scale. The mul-
tiscale framework can provides useful initial guesses for well control optimization
problems at each subsequent scale. This strategy can accelerate the convergence of
the approach to an optimal solution, but the convergence to the global optimum
is not guaranteed. However, even a local optimum may often give a significant
improvement over the initial control strategy ([4,8,61,65,55,44]).

Finding the global optimum for well control optimization problem is challeng-
ing. There are several ways to improve the global convergence of the multiscale
approach, such as using algorithms with better global convergence properties, in-
creasing the computational budget, and adding more randomization to the multi-
scale framework. In this paper, we choose not to explore this topic.

4 Case studies

In this section, we list all approaches considered, and give a detailed description
of the reservoir models used in this paper.

4.1 Optimization Approaches

The approaches considered in this paper include the three original optimization
algorithms, GPS, PSO, and CMA-ES and three hybrid approaches that com-
bine these algorithms with our modified multiscale method. The description of
GPS, PSO, and CMA-ES are given in [5,62,64,40,28,6]. The hybrid multiscale
approaches are labeled as M-GPS, M-PSO, and M-CMA-ES.

To investigate the effect of n0 and ns, we test four different configurations for
each hybrid approach. We use the Roman numerals I, II, III, and IV to represent
the four configurations. The configurations used are:

• Configuration I: the initial number of control steps for each well is n0 = 1 and
the split factor is ns = 2. With this configuration, the multiscale method is
the same as the successive-splitting multiscale method from [57].
• Configuration II: the initial number of control steps for each well is n0 = 2 and

the split factor is ns = 2.
• Configuration III: the initial number of control steps for each well is n0 = 2

and the split factor is ns = 4.
• Configuration IV: the initial number of control steps for each well is n0 = 1

and the split factor is ns = 4.

Fig. 3 provides an overview of all approaches considered in our experiments.
The approaches fall into different quadrants according to their search features.
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CMA-ES

M-CMA-ES

M-CMA-ES-I

M-CMA-ES-II

M-CMA-ES-III

M-CMA-ES-IV

Global 

Search

Local 

Search

Stochastic 

Search

Deterministic 

Search

PSO

M-PSO

M-PSO-I

M-PSO-II

M-PSO-III

M-PSO-IV

GPS

M-GPS

M-GPS-I

M-GPS-II

M-GPS-III

M-GPS-IV

Fig. 3 An overview of all optimization approaches considered in our experiments.

4.2 Model description

Two reservoir models are considered in this paper. The first one is a simple 2-D
reservoir model. This model is used to analyze the performance of the approaches
mentioned in Section 4.1. The second model is a real-world reservoir model, and
we apply the multiscale approaches to this model to optimize the control strategy.

4.2.1 Model 1: 5-spot model

The first model is a single-layer reservoir containing four producing wells and one
injection well in a five-spot well pattern [49]. The reservoir model is represented
by a 51 × 51 uniform grid (4x = 4y = 10m; 4z = 5m). We consider only
oil-water two phase flow. The water compressibility is 4 × 10−4 1/MPa, water
viscosity is 0.42 mPa · s, oil compressibility is 5× 10−6 1/MPa and the oil viscos-
ity is 1.6 mPa · s. The rock compressibility is 2.1 × 10−3 1/MPa. The oil-water
relative permeability curves are shown in Fig. 5. The reservoir permeability field
and well placements are shown in Fig. 4. We note that there are four different
regions of homogeneous permeability. The permeabilities are 1000 mD for the two
high-permeability regions, and 100 mD for the two low-permeability regions. The
porosity, net-to-gross ratio, and initial water saturation are set to 0.2 at all grid
blocks.

The reservoir lifetime is set to 720 days. The injection well INJ-01 (in Fig. 4)
is not controlled, the liquid rate is fixed at 240 m3/d. The liquid rates of four
producing wells are the optimization variables. Bound constraints are considered
for the producing wells. The lower bound is set to 0 m3/d and the upper bound
is 80 m3/d for PRO-01 and PRO-03 while 0 m3/d and 40 m3/d are the lower and
upper bounds for PRO-02 and PRO-04. The initial rates of all producing wells are
20 m3/d. The BHP bounds are set in the simulator. The lower BHP is set to 5
MPa and the upper BHP is set to 40 MPa for all wells.

The objective function we use for this model is the NPV (see equation (1)) and
the corresponding economic parameters are given in Table 1.

4.2.2 Model 2: PUNQ-S3

The second reservoir model is the PUNQ-S3, which is a small-size reservoir model
based on the North Sea reservoir [24]. The model contains a three phase gas-oil-
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Fig. 4 The permeanbility field (mD) for model 1.
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Fig. 5 The oil-water relative permeability curves for model 1.

Table 1 Economic parameters used for model 1.

Parameter Value

Oil revenue USD 500.0/m3

Water-production cost USD 250.0/m3

Water-injection cost USD 80.0/m3

Annual discount rate 0

water system with 19 × 28 × 5 grid blocks, of which 1761 blocks are active. The
field contains 6 production wells but no injection wells are present due to the
strong aquifer. Fig. 6 shows the porosity, permeability and oil saturation present
in the model.

We use a production period of 3840 days (about 10 years), with a minimum
control interval of 120 days. The initial liquid rates for all wells are 100 m3/d. The
lower bound is set to 0 m3/d and the upper bound is 200 m3/d for all wells. BHP
bounds are also considered in this example. The lower BHP bounds are set to 12
MPa and no upper bound is enforced for any producers. The economic parameters
for the NPV calculation are given in Table 2.
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(a) Porosity (b) Permeability (c) Oil saturation

Fig. 6 Property and wells of PUNQ-S3 field.

Table 2 Economic parameters used for PUNQ-S3.

Parameter Value

Gas revenue USD 0.5/m3

Oil revenue USD 500.0/m3

Water-production cost USD 80.0/m3

Annual discount rate 0

5 Results and discussion

5.1 Effects of control frequency on well control optimization

To show the effect of the control frequency on the NPV for the first model, as
described in Section 4.2.1, we turn off the multiscale approach and optimize using
four different, fixed control frequencies. Four control frequencies are considered
and these constitute four variations of the optimization problem:

• Case 1A: each well is produced under a liquid rate throughout its lifetime. This
gives 4 optimization variables in total.
• Case 1B: the liquid rate for each well is updated every 360 days (2 control

periods). This gives 8 optimization variables in total.
• Case 1C: the liquid rate for each well is updated every 90 days (8 control

periods). This gives 32 optimization variables in total.
• Case 1D: the liquid rate for each well is updated every 22.5 days (32 control

periods). This gives 128 optimization variables in total.

Three optimization algorithms, GPS, PSO, and CMA-ES, are applied to each
case to find the optimal controls and the corresponding NPV.

5.1.1 Optimal NPV under different control frequencies

Fig. 7 compares the optimal NPV under the four different control frequencies for
this model. The results shown are the best values found using all the optimization
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approaches. Well control with a reasonable frequency is necessary — we obtain a
significantly higher NPV than what is possible when using a fixed rate over the
life cycle (Case 1A). It is clear that with a continued increase of the number of
control adjustments, the optimal NPV grows more and more slowly. The increase
in maximum NPV found is very slight (0.28 %) when the number of control steps
for each well increases from 8 (Case 1C) to 32 (Case 1D). There is no need to adjust
well rates too frequently. We will not see a considerable revenue increase and the
increase in the number of control adjustments will increase operation costs. Also
the problem with a large number of control adjustments is harder to optimize and
the algorithms have a higher risk of falling into a local optima (see Section 5.2.2).
This justifies the use of multiscale approach to determine an appropriate control
frequency.
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Fig. 7 Optimum NPV for cases with different control frequencies.

5.1.2 Optimal controls under different control frequencies

Fig. 8 presents the optimum controls for wells PRO-01 and PRO-02 under differ-
ent control frequencies. We omit the results for well PRO-03 and PRO-04 because
the reservoir is symmetric. The optimum controls become more like a bang-bang
solution for all wells with an increase in the number of control steps. It is worth
noting that the optimum controls for Case 1A are significantly different that those
for Cases 1B–1D. This reflects the different production strategies for wells using a
static rate compared to using dynamic well controls in water flooding reservoirs.
The similarity of optimum controls between different control frequencies is impor-
tant for the success of a multiscale framework. As the multiscale approach uses
the optimal controls found in iteration i as the initial guess for iteration i + 1,
a good initial guess could accelerate the optimization process and a bad initial
guess may guide the optimizer to wrong search areas and directions (see Section
5.2.1). Indeed Fig. 8 shows this required similarity as the number of control steps
is increased.

5.2 Performance of GPS, PSO, and CMA-ES for well control optimization

In this section we address the performance of GPS, PSO, and CMA-ES for well
control optimization without the use of the multiscale framework. We use the same
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Fig. 8 The optimum well controls for different control frequencies.

test cases as in Section 5.1. We use the maximum number of simulation runs as
the stopping criterion, and this value is set to 100 times the number of control
variables. As PSO and CMA-ES are stochastic algorithms, 10 trials are performed
for these two algorithms to assess the average performance.

5.2.1 Parameter tuning and the effect of the initial guess on GPS, PSO, and
CMA-ES

The performance of the optimization algorithms are affected by the choice of their
parameter values. In this section, we complete parameter tunings for GPS, PSO,
and CMA-ES to improve their performance in solving well control optimization
problems. Here we perform a tuning study for two choices of initial guesses. The
good initial guess is chosen to mimic the initial guess provided by the multiscale
algorithm. The bad initial guess is purposely chosen to be far away from the optimal
controls.

We hypothesize that the performance of the local search algorithms are highly
affected by the initial guess, while the stochastic global search algorithms are not.
We take Case 1B as an example and use the three different initial guesses shown
in Table 3. For each initial guess, 10 trials were performed for PSO and CMA-ES
and 1 trial for GPS (since it is a deterministic algorithm).

Table 3 Three initial guesses for GPS, PSO, and CMA-ES.

Type Initial guess NPV, ×106 USD
good [20, 20, 20, 20, 20, 20, 20, 20] 5.0009

medium [20, 20, 40, 40, 40, 40, 20, 20] 2.6484
bad [0, 40, 0, 80, 0, 80, 0, 40] -4.2826

Fig. 9 shows the plots of NPV versus the number of simulations for GPS,
PSO, and CMA-ES. Each line represents one trial. The early convergence history
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of GPS and PSO is affected by the choice of the initial guess. CMA-ES recovers
quite quickly from the bad initial guess, and even converges more quickly than
from a good initial guess in some cases. With a large number of simulation runs,
the effect of initial guess for all three algorithms is quite small. This suggests
that if we want to make efficient use of the multiscale approach, the number of
simulations at each scale should be limited.
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Fig. 9 Plots of NPV versus the number of simulation runs for GPS, PSO, and CMA-ES with
different initial guesses with 8 control steps. Each line represents one trial. The colors red,
green, and blue denotes good, medium, and bad initial guesses, respectively.

Again using a good and a bad initial guess, we analyzed the effect of the other
parameters for PSO and CMA-ES, to identify the primary parameters which affect
the performance of the algorithms. For PSO, the algorithm parameters include the
population size λ, and the parameters ω, c1, and c2. Three levels are chosen for
each parameter. For CMA-ES, the algorithm parameters include the population
size λ, the parent number µ (number of candidate solutions used to update the
distribution parameters), the recombination weights ω, and the parameter σ, which
determines the initial coordinate-wise standard deviations for the search.

For each parameter choice, 10 trials are performed for Case 1B with a good and
a bad initial guess to start the optimization. We use the best NPV obtained after
20% of the maximum number of simulation runs as the evaluation criterion of the
algorithm’s performance. We mainly focus on the performance of the algorithms
at an early stage because the multiscale framework requires a good early stage
performance for the hybrid optimization algorithm. Also our test results showed
that the performance of the algorithms are less sensitive to the parameter values at
a later stage. The performance for each parameter choice is shown in the beanplots
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in Fig. 10 and Fig. 11. A beanplot [39] promotes visual comparison of univariate
data between groups. In a beanplot, the individual observations are shown as small
points or small lines in a one-dimensional scatter plot. In addition, the estimated
density of the distributions is visible and the mean (bold line) and median (marker
‘+’) are shown.

From Fig. 10 we can see that for PSO the population size plays the most
important role in the algorithm’s ability to utilize the good initial guess. When
the population size equals 20 or 50, PSO with a bad initial guess obtains an optimal
NPV in a similar number of iterations as PSO with a good initial guess. This is
because, with the same number of simulation runs, PSO with a small population
size can evolve more generations, and this decreases the affect of the initial guess.
The bigger the population size, the smaller the variability in the NPV results,
with a similar mean value. For these reasons, we choose λ = 100 for all subsequent
PSO experiment. Parameter c2 is one of the weighting parameters, the bigger c2,
the greater the tendency for the particles to fly towards the best location found
so far. We suggest a bigger c2 when combining with the multiscale approach. The
parameters ω and c1 have no obvious affect in this case. Generally for all parameter
values PSO responds favorably to the better initial guess.
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Fig. 10 Beanplots of the NPV for various parameter settings of PSO. The left side of each
beanplot gives the results obtained with a good initial guess, and the right side gives the results
obtained with a bad initial guess. The individual dots show the NPV obtained by each trial.
The background pink and green colors show the distribution of results. The short horizontal
line and the marker ‘+’ denote the mean and median of all 10 trials, respectively.

From Fig. 11 we can see that the good initial guess gives a higher average NPV
with smaller variability for CMA-ES. For this problem, the best configuration is
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σ = 0.3, λ = 10, µ = 2, and ω = superlinear; this is also the default configuration
of CMA-ES. In fact, according to the work of [31], CMA-ES does not require
significant parameter tuning for its application. The choice of parameters is not
generally left to the user (arguably with the exception of population size σ).
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Fig. 11 Beanplots of the NPV for various parameter settings of CMA-ES. The left side of
each beanplot gives the results obtained with a good initial guess, and the right side gives
the results obtained with a bad initial guess. The individual dots show the NPV obtained by
each trial. The background pink and green colors show the distribution of results. The short
horizontal line and the marker ‘+’ denote the mean and median of all 10 trials, respectively.

5.2.2 Performance with different control frequencies

Table 4 and Fig. 12 show the performance of GPS, PSO, and CMA-ES for well
control optimization problems with different control frequencies. In Table 4, the
maximum, minimum, mean, median, and standard deviation of the NPV for each
case are given. From the table we can see that, for Case 1A, which has only 4
variables, GPS obtains the highest NPV after 400 simulation runs. Similar results
are found in Case 1B. In Case 1C, the maximum NPV of CMA-ES exceeds the
result obtained by GPS, but the mean and median NPV for CMA-ES are lower
than those of GPS. In these three cases, although the final NPV of GPS is larger
than the final NPV for CMA-ES and PSO, the difference of the mean/median
NPV for the three algorithms is quite small (less than 2%). In Case 1D, which has
128 variables, the NPV obtained by GPS is obviously lower than that of CMA-ES.
Generally, CMA-ES showed excellent performance in most cases. GPS performs
best when the problem dimension is very small.
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Table 4 Results for Cases 1A-1D for Model 1 using GPS, PSO, and CMA-ES. Values shown
are NPV (×106 USD).

Case Algorithm Trials Max Min Mean Median Std.
1A GPS 1 5.3132 5.3132 5.3132 5.3132 -

PSO 10 5.2850 5.1850 5.2603 5.2720 0.0310
CMA-ES 10 5.3121 5.2969 5.3034 5.3045 0.0048

1B GPS 1 10.3539 10.3539 10.3539 10.3539 -
PSO 10 10.3200 9.4220 10.0840 10.1700 0.2819
CMA-ES 10 10.3536 10.3511 10.3527 10.3528 0.0008

1C GPS 1 12.3470 12.3470 12.3470 12.3470 -
PSO 10 12.2700 11.3800 11.9660 12.1050 0.2966
CMA-ES 10 12.3474 12.3447 12.3466 12.3467 0.0007

1D GPS 1 9.5083 9.5083 9.5083 9.5083 -
PSO 10 11.7000 10.2300 11.1290 11.1700 0.4910
CMA-ES 10 12.4285 12.3466 12.4054 12.4178 0.0315

Fig. 12 shows the plots of NPV versus the number of simulation runs for
the four cases. In this figure, we use a solid line to show the median NPV of
each algorithm, and use the same color as the line to fill the area between the
maximum and minimum NPV for each algorithm. These plots clearly show the
performance of GPS, PSO, and CMA-ES using different computational budgets.
GPS obtains the highest NPV for Case 1A–1C at the end of optimization. But
the budget (number of simulation runs) required for GPS grows rapidly as the
dimension of the problem increases. GPS converged with no more than 50% of
total budget for Cases 1A and 1B, and about 80% of the total budget for Case
1C. For Case 1D, GPS did not converge after 100D simulation runs. CMA-ES
obtains almost as high a NPV as GPS for Case 1A–1C, and it obtains highest
NPV for Case 1D. Furthermore, CMA-ES showed an excellent performance when
the budget is limited. PSO also outperforms GPS for a low budget and a large
problem dimension, but it still can not beat CMA-ES in these cases.

Since PSO and CMA-ES are stochastic algorithms, the performance is different
for each trial. In Table 4 we can see the standard deviation for PSO is larger
than the standard deviation for CMA-ES. In Figure 12 we can see that the best
NPV obtained has a higher variation for low computational budgets than for high
budgets. For PSO, the variability did not decrease in Case 1C and 1D as the
algorithm converged.

To investigate further, we choose 2 of the 32 variables and 5 of the 10 trials for
Case 1C and then compare the population distribution of CMA-ES and PSO at
different iterations. The resulting scatter diagrams are shown in Fig. 13. In Case
1C, the population size is 100 for PSO, and 14 for CMA-ES. Hence after same
number of simulation runs, CMA-ES and PSO are at different iteration numbers.
After 500 simulation runs, CMA-ES is at the 36th iteration, while PSO is at the
5th iteration. After about 3000 simulation runs (Fig. 13(d) and 13(h)), we can
see that PSO has converged to different locations for each trial. Compared with
CMA-ES, PSO is more easily falls into local optima in our test cases, in spite of
the larger population size and the ability search the entire space.



Multiscale Approach 21

0 100 200 300 400

Simulation runs

5.0

5.2

5.4

5.6

5.8

6.0

N
P

V,
×

1
0

6
U

S
D

GPS
PSO
CMA-ES

(a) Case 1A

0 100 200 300 400 500 600 700 800

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

GPS
PSO
CMA-ES

(b) Case 1B

0 500 1000 1500 2000 2500 3000

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

GPS
PSO
CMA-ES

(c) Case 1C

0 2000 4000 6000 8000 10000 12000

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

GPS
PSO
CMA-ES

(d) Case 1D

Fig. 12 Optimization performance for well control problems using GPS, PSO and CMA-
ES. The solid lines give the median NPV over all 10 runs of PSO and CMA-ES without the
multiscale framework. The areas between maximum and minimum NPV are filled with the
corresponding color. Note that the x-axis scale is different for each case.
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Fig. 13 Scatter diagrams for CMA-ES and PSO for Case 1C. The bracketed number in the
caption of each sub-figure is the iteration number. Points represent the candidate solutions at
this specific iteration.
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5.2.3 Performance in parallel environments

GPS, PSO, and CMA-ES parallelize naturally. Here we investigate the perfor-
mance of these three algorithms in parallel environments. Table 5 gives the pop-
ulation sizes of GPS, PSO, and CMA-ES in Cases 1A–1D. The population size
for GPS and CMA-ES are decided automatically by the algorithms based on the
problem dimension. For a D-dimensional problem, the population size equals 2D
for GPS, and 4 + b3 ln (D)c for CMA-ES. The population size for PSO is usually
decided by the user and we use 100 for all cases (more discussion on the population
size is given in Section 5.2.1).

In a parallel environment, we can evaluate a number of individuals, up to
the number of processors, simultaneously. Note that we are not able to evaluate
the individuals from different iterations at the same time. For well control opti-
mization problems, the computation time is mainly spent evaluating the reservoir
simulation, a parallel environment can greatly reduce the time of optimization.

Table 5 Population size of GPS, PSO, and CMA-ES for Case 1A-1D. D is the number of
variables in the problem.

Case D GPS PSO CMA-ES
1A 4 8 100 8
1B 8 16 100 10
1C 32 64 100 14
1D 128 256 100 18

Assume we have three parallel environments, with 8, 32, and an infinite number
of processors, respectively. Fig. 14 compares the parallel performance of GPS, PSO,
and CMA-ES in the parallel environments to the performance in a sequential
environment. We use the number of runs as the y-axis in this figure. One run
evaluates a number of potential solutions up to the number of processors. In an
iteration, if the number of potential solutions is less than the number of processors,
then all the potential solutions are evaluated in a single run, with some processors
idle. The number of runs is equal to the number of simulations if we have only one
processor.

In Fig. 14, we compare the number of runs needed to get from the initial
NPV to 50% of the final NPV, as well as the number of runs needed to reach the
maximum number of simulator evaluations (100 times the problem dimension).
From this figure we can see that, with the increase of processors, the number of
runs required for GPS, PSO, and CMA-ES decrease, until the number of processors
is larger than the population size. For each algorithm, the larger the population
size, the greater the benefits from the parallel environment. With an increase
in the number of processors, the order of performance of the three algorithms
changes. For Case 1A, GPS performs best followed by CMA-ES and PSO in the
sequential environment (number of processors equals 1). The order becomes GPS,
PSO, CMA-ES (in decreasing order of performance) when the number of processors
reaches 32. And with enough processors (≥ 100), the order becomes PSO, GPS,
CMA-ES. This is because for Case 1A, the population size for GPS, PSO and
CMA-ES is 8, 100, and 8, respectively. Once the number of processors exceeds 8,
the total number of runs required for GPS and CMA-ES no longer decreases. The
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total number of runs required for PSO keeps falling until the number of processors
exceeds 100. The order also changes depending on the number of processors for
Case 1B–1D. Generally, a parallel environment can greatly reduce the time spent
for these algorithms. PSO can outperform GPS and CMA-ES in performance if
the number of processors is large enough.
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Fig. 14 Number of runs required for the well control optimization problems in parallel envi-
ronments with different numbers of processors. “50%” in the legend denotes the number of runs
required to reach 50% of the maximum NPV for the algorithms. “final” in the legend denotes
the total number of runs required to reach the maximum number of simulator evaluations for
the algorithms.

5.3 Multiscale optimization for Model 1

In this section we address the performance of the multiscale approaches (M-GPS,
M-PSO, and M-CMA-ES) for well control optimization. We use the first model
as described in Section 4.2. We stop the optimization at each scale when the
average relative well rate change is less than 10% of the distance between the
upper and lower bounds on the well rates. No further scales will be completed
when the relative change in the NPV is < 10% between two neighboring scales.
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The maximum number of simulation runs for the problem is set to 3200. As M-
PSO and M-CMA-ES are stochastic algorithms, 10 trials were performed for these
two algorithms to assess the overall performance.

5.3.1 Performance of the multiscale approaches

As in Section 4.1, we consider four configurations for each multiscale approach.
As a first test, the multiscale optimization process is terminated when the number
of control steps reaches 8 each well for configuration I–III, and 16 each well for
configuration IV. The values of n0 and ns in different configurations are given in
Section 4.1.

The plots of NPV versus the number of simulation runs for the different mul-
tiscale approaches and the different configurations, as well as the plots for the
standard algorithms (GPS, PSO, CMA-ES) with 8 pre-set control steps for each
well, are shown in Fig. 15. From the figure we see that compared with direct op-
timization with 8 well control adjustments, both GPS and PSO converge faster
when using the multiscale approach. GPS convergence improves the most amongst
the three algorithms. Fig. 15(b) shows that for this test case, M-PSO locates a
control strategy which gives a higher NPV than PSO. The performance of CMA-
ES (Fig. 15(c)) is quite different. The results show that CMA-ES converges faster
than M-CMA-ES for this relatively small scale optimization problem. This is be-
cause CMA-ES is less sensitive to the quality of the initial guess and hence it does
not take great advantage of the multiscale framework to speed up its convergence
rate. The multiscale framework for CMA-ES still does, however, give us a way to
automatically detect a good control frequency for well control optimization.

As a second test of the multiscale framework we increase the number of control
steps to 32 for each well. The plots of NPV versus the number of simulation runs
for the different multiscale approaches and the different configurations, as well as
the plots for the standard algorithms (GPS, PSO, CMA-ES) are shown in Fig.
16. From the figure we see that compared with direct optimization, all algorithms
converge faster when using the multiscale approach. GPS convergence improves
the most amongst the three algorithms, followed by PSO and CMA-ES.

5.3.2 Parameter tuning of the multiscale approaches

To investigate the effect of n0 and ns in more detail, we test the performance of
our multiscale approach with different configurations. The tests are divided into
two groups:

• Group 1: the initial number of control steps for each well is varied from 1 to 4
and the split factor is fixed at ns = 2.
• Group 2: the initial number of control steps for each well is fixed at n0 = 2

and the split factor is varied from 2 to 5.

We use all three derivative free algorithms to tune of the multiscale parameters
n0 and ns.

The effect of the initial number of control steps, n0, is shown in Fig. 17 and
Fig. 19. With a low computational budget, a higher value of n0 ≥ 2 is generally
better for all three algorithms. A low budget allows very few scales to complete.
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Fig. 15 Comparison of the performance of multiscale approaches with different configurations
with 8 final control adjustments for each well.
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Fig. 16 Comparison of the performance of multiscale approaches with different configurations
with 32 final control adjustments for each well.
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Hence it is best, in terms of the final NPV obtained, to increase the initial number
of control steps. Medium budgets obtain the best results with n0 = 2. With a
higher budget, the choice n0 = 2 performs best for GPS, while PSO and CMA-ES
are insensitive to the choice of n0. Unless using a very low budget, n0 = 2 is an
all round good choice.

The effect of the split factor, ns, is shown in Fig. 18 and Fig. 20. With a low
budget ns = 2 is best while PSO and CMA-ES are insensitive to the choice of ns.
With a higher budget a lower values of ns performs best for GPS and PSO, while
CMA-ES is relatively insensitive. The choice ns = 2 appears to perform well for
all methods and budgets.

For low to medium budgets, the performance of PSO lags behind the perfor-
mance of GPS and CMA-ES. This is likely due to the generation of the random
swarm at the beginning of each scale (explicitly using only the best particle from
the end of the last scale). With higher budgets PSO is able to eventually recover
as an optimizer within the multiscale framework. The reinitialization of the swarm
also affects the performance of PSO within the multiscale framework with a high
split factor. GPS and CMA-ES, on the other hand, choose a new set of candidate
solutions at the beginning of each scale based closely on the best solution found
at the end of the last scale.

Overall the choice of n0 affects the performance of PSO and CMA-ES more
than the choice of ns (this is true for PSO unless ns is very large). GPS shows a
slightly larger sensitivity on the choice of ns.
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Fig. 17 Comparison of the performance of multiscale approaches with different initial numbers
of control steps n0 (the split factor ns is fixed at 2 for each trial).
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Fig. 18 Comparison of the performance of multiscale approaches with different split factors
ns (the initial number of control steps n0 is fixed at 2 for each trial).
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Fig. 19 The performance of multiscale approaches with different initial number of control
steps, n0, under different budgets.
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Fig. 20 The performance of multiscale approaches with different split factor, ns, under dif-
ferent budgets.
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5.3.3 Performance in parallel environments

Fig. 21 shows the performance of the multiscale approaches in parallel environ-
ments with 8, 32, and an infinite number of processors using 8 pre-set final control
steps for configurations I–III and 16 control steps for configuration IV. As in Sec-
tion 5.2.3, we use the number of runs as the horizontal axis. The lines for PSO,
CMA-ES, M-PSO, and M-CMA-ES are the medians of 10 trials. From this fig-
ure we can see that, not surprisingly, the more processors the less runs needed to
converge. In a parallel environment, the improved convergence of the multiscale
approach is less apparent. The multiscale approach still benefits, however, if the
optimal control frequency is unknown and hence not specified a priori.
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Fig. 21 Comparison of the performance of multiscale approaches with 8 final control adjust-
ments for each well in parallel environments with 8, 32, and an infinite number of processors.

In Fig. 22 we repeat this experiment for the more difficult problem with 32
control steps for each well. The results are similar.

5.3.4 Performance with different computational budgets

Here we assess the effect of computational budget on the efficacy of the multiscale
approach. We use 300, 1500, and 3000 simulation runs as a low, medium, and



Multiscale Approach 29

0 50 100 150 200 250 300 350 400

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-GPS-I
M-GPS-II
M-GPS-III
M-GPS-IV
GPS

(a) GPS, CPU=8

0 50 100 150 200 250 300 350 400

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-PSO-I
M-PSO-II
M-PSO-III
M-PSO-IV
PSO

(b) PSO, CPU=8

0 50 100 150 200 250 300 350 400

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-CMA-ES-I
M-CMA-ES-II
M-CMA-ES-III
M-CMA-ES-IV
CMA-ES

(c) CMA-ES, CPU=8

0 20 40 60 80 100 120 140

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-GPS-I
M-GPS-II
M-GPS-III
M-GPS-IV
GPS

(d) GPS, CPU=32

0 20 40 60 80 100 120 140

Simulation runs

5.0

7.0

9.0

11.0

13.0
N

P
V,
×

1
0

6
U

S
D

M-PSO-I
M-PSO-II
M-PSO-III
M-PSO-IV
PSO

(e) PSO, CPU=32

0 20 40 60 80 100 120 140

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-CMA-ES-I
M-CMA-ES-II
M-CMA-ES-III
M-CMA-ES-IV
CMA-ES

(f) CMA-ES, CPU=32

0 20 40 60 80 100

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-GPS-I
M-GPS-II
M-GPS-III
M-GPS-IV
GPS

(g) GPS, CPU=inf

0 20 40 60 80 100

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-PSO-I
M-PSO-II
M-PSO-III
M-PSO-IV
PSO

(h) PSO, CPU=inf

0 20 40 60 80 100

Simulation runs

5.0

7.0

9.0

11.0

13.0

N
P

V,
×

1
0

6
U

S
D

M-CMA-ES-I
M-CMA-ES-II
M-CMA-ES-III
M-CMA-ES-IV
CMA-ES

(i) CMA-ES, CPU=inf

Fig. 22 Comparison of the performance of multiscale approaches with 32 final control adjust-
ments for each well in parallel environments with 8, 32, and an infinite number of processors.

high budget. For different budgets, the performance of the different multiscale
approaches and the different configurations are shown in several beanplots in Fig.
23. In the beanplots, the individual observations are shown as small lines in a
one-dimensional scatter plot. The estimated density of the distributions is visible
and the mean (blue bold line) and median (red ‘+’) are shown.

Fig 23(a) shows results for a low budget. Since GPS is a deterministic algo-
rithm, we have no distribution for the four configurations of M-GPS. M-GPS-II
and M-GPS-III obtained the highest NPV amongst all four configurations. Al-
though some configurations of M-PSO and M-CMA-ES could obtain a relatively
high NPV, there is also has a risk of obtaining a low NPV due to the high vari-
ability. For a medium budget, Fig 23(b), the variation of all four configurations of
M-CMA-ES is relatively small. The variation of the M-PSO is quite large. With
this budget of function evaluations, M-GPS and M-CMA-ES are good choices. For
a large budget, we see that M-GPS-IV obtained a higher NPV than the other con-
figurations. With the fourth configuration, the approach terminated at 16 control
steps for each well, while the other three configurations terminated at 8 control
steps for each well. With more control steps, a higher NPV could be obtained.
Configuration I performs less well with a low budget. This is because the initial
number of control steps for configuration I is 1. The optimal control found with
only 1 step is very different when compared with the optimal control found with
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more steps, and hence does not provide a good initial guess for the next step of
the multiscale process. In general, we see that the second configuration performs
better than the other three configurations for M-GPS, M-PSO and M-CMA-ES.
Furthermore, M-GPS-II is highly recommended for all budgets.
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Fig. 23 Beanplots for different configurations of our multiscale approaches.

5.4 Multiscale optimization for a real-world reservoir

Based on the results of the previous section we now apply the multiscale approaches
with configuration II (n0 = 2 and ns = 2) to solve the well control problem of
reservoir PUNQ-S3 (see Section 4.2.2). The maximum number of function evalua-
tions is set to 10000. We use an average relative well rate change of < 10% of the
gap between the upper and lower bound as the stopping criterion for each scale.
No further scales will be completed if the relative change in the NPV is < 10%
between two neighboring scales. Due to the large computational time we perform
only 3 trials for M-PSO and M-CMA-ES.

Fig. 24 shows the performance of M-GPS-II, M-PSO-II and M-CMA-ES-II.
The performance of GPS, PSO, and CMA-ES using a pre-set control frequency of
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32 control steps for each well is shown in this figure as well. The results show that
for the same number of reservoir simulations, combining these three algorithms
with the multiscale framework gives higher NPV values as compared to directly
optimizing with the largest number of control steps.
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Fig. 24 Comparison of the performance of multiscale approach and optimizers without mul-
tiscale for PUNQ-S3. Here are the median NPV of trials for PSO and CMA-ES.

The values of NPV found by the approaches after 1000, 5000, and 10000 sim-
ulation runs are shown in Table 6. From the table we can see that, M-GPS-II
outperforms among all three multiscale approaches, even when the number of sim-
ulation runs is limited. Of course the deterministic M-GPS has the additional
advantage of having no variability in the outcome. Without the multiscale frame-
work, CMA-ES performs the best.

Table 6 Median NPV (109 USD) with different budgets for PUNQ-S3.

Algorithm Trails 1000 5000 10000
GPS 1 2.9936 3.0061 3.0194
M-GPS-II 1 3.0567 3.0570 3.0570
PSO 3 3.0240 3.0365 3.0395
M-PSO-II 3 3.0555 3.0560 3.0560
CMA-ES 3 3.0384 3.0558 3.0572
M-CMA-ES-II 3 3.0561 3.0563 3.0568

Fig. 25 shows the optimum well controls found with the different optimization
approaches. The approaches include GPS, PSO, CMA-ES, which starts the op-
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timization immediately with a high number of control intervals, and M-GPS-II,
M-PSO-II, M-CMA-ES-II, which use the multiscale framework. From the figure
we can see that, without the multiscale framework, all three optimization algo-
rithms obtain “nervous” (fluctuating in time) control strategy for this example.
PSO obtains the most “nervous” solution, and GPS the least. When combined
with the multiscale framework, GPS and PSO show a significant improvement
in the control strategy. M-GPS-II obtains the most stable control strategy with
the highest NPV. For the stochastic algorithms, PSO and CMA-ES, the multi-
scale framework can decrease the degree of the “nervousness”. The reason for the
observed nervous control strategy is that many different control strategies will re-
sult in (nearly) identical objective function values. With a limited computational
budget, the optimization algorithms easily get trapped in a local (and nervous)
optimum which leads to premature convergence. Considering the well management
cost, the nervous control should be avoided in oil production in practice. We see
that the multiscale framework can decrease the degree of the “nervousness”. [49]
provided an alternate method to avoid the “nervous” solution. We note that, for
some complex reservoirs, a nervous control may outperform since the rapid change
of well production/injection rate causes fluctuations of the pressure field, resulting
in a larger flooding area.

6 Conclusions

In this paper we have considered three derivative-free optimization algorithms
combined with a multiscale framework to solve well control optimization problems.
The optimization algorithms used include GPS, which is a deterministic local
search approach; PSO, which is a stochastic global search method; and CMA-
ES, which is a stochastic local search method. A generalization of the successive-
splitting multiscale approach from [44,57] was introduced to combine with the
derivative-free optimization algorithms.

Based on thorough numerical experiments the following conclusions can be
drawn:

• The control frequency does have a significant effect on well control optimization
problems. The more frequent the well control adjustment, the higher the NPV
that can be obtained but at the cost of a harder optimization problem. This
increase in optimal NPV becomes less significant as we continue to increase
the number of control steps. Considering the operation costs, each reservoir
has a optimal control frequency. The optimal controls are similar with different
control frequencies when every well is produced under a liquid rate throughout
its lifetime.
• Without the multiscale framework, GPS performs best when the problem di-

mension is very small and the budget is large enough. CMA-ES showed ex-
cellent performance when the budget is limited. A parallel environment can
greatly reduce the time spent for these algorithms. PSO can outperform GPS
and CMA-ES in performance if the number of processors is large enough. The
choice of the initial guess has a significant effect on the convergence speed for
GPS and PSO at the early stage of optimization. CMA-ES, by contrast, is
less sensitive to the choice of initial guess. The performance of PSO is affected
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(f) M-CMA-ES-II

Fig. 25 Optimum well controls for the different optimization approaches for PUNQ-S3 ex-
ample. Results for 3 trials are shown with different line colors (red, blue, and green) for each
stochastic algorithm (PSO, CMA-ES, M-PSO-II, M-CMA-ES-II).
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dramatically by the population size. Parameter tuning for CMA-ES showed
that the default settings work quite well.
• The multiscale approaches have two advantages in solving well control problem.

(1) they provide a way to optimize the control frequency and the well controls
simultaneously. (2) when compared to the standalone algorithms the multiscale
approach can speed-up the convergence. Based on the results of the test cases,
the convergence of GPS and PSO improve the most when combined with the
multiscale framework. The multiscale framework is more efficient as the number
of control steps increases. The difference in performance between the multiscale
hybrid algorithms and the stand-alone algorithms decreases as the number of
processors increases.
• The multiscale framework has two key parameters, the choice of the initial

number of control steps n0 and the split factor ns. The choice n0 = 2 and
ns = 2 gave the best performance. In the multiscale framework, M-GPS-II is
highly recommended for any computational budget.

All above conclusions are based on the experiments in this paper. Although the
multiscale approach has shown its potential to solve complex well control problems,
there are still many possible avenues for future work. There is flexibility to choose
different n0 and ns values for each well. The proposed multiscale approach results
in the same number of control steps for each well in the reservoir. In some cases, a
different control frequency for individual wells can better balance the production
yield and made best use of computational budget. Hence, a heuristic multiscale
framework with an adaptive initial number of control steps and splitting factor for
each well is suggested for further study. The performance of multiscale approaches
with nonlinear constraints still needs additional study. As does the development
of robust stopping criteria within the multiscale framework.
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