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The efficient generation of meshes is an important step in the numerical solution of various

problems in physics and engineering. Here we are interested in situations where global mesh

quality and coupling to the physical solution is important. Hence we consider PDE based

mesh generation and present a method for the construction of adaptive meshes in two spatial

dimensions using domain decomposition that is suitable for an implementation on parallel

computing architectures. The method uses the stochastic representation of the exact solution

of a linear mesh generator of Winslow type to find the points of the adaptive mesh along

the sub-domain interfaces. The meshes over the single sub-domains can then be obtained

completely independently of each other using the probabilistically computed solutions along

the interfaces as boundary conditions for the linear mesh generator. Further improvements

through the use of interpolation along the sub-domain interfaces and smoothing of mesh

candidates are discussed. Various examples of meshes constructed using this stochastic–

deterministic domain decomposition technique are shown and compared to the respective

single domain solutions using a representative mesh quality measure.

1 Introduction

Grid adaptation is seen as an integral component of the numerical solution of many partial

differential equations (PDEs). Here we are interested in the calculation of an adaptive grid

automatically tuned to the underlying solution behaviour. The grid is found by solving a mesh

PDE which is (often) coupled to the physical PDE of interest. Recently this general approach has

shown great promise, solving problems in meteorology [3], relativistic magnetohydrodynamics

[10], groundwater flow [14], semiconductor devices [27], and viscoelastic flows [28], to name just a

few. A thorough, recent overview of PDE based mesh generation may be found in [12]. Such grid

calculations potentially add a burdensome overhead to the solution of the physical model. Here

we present an efficient, parallel strategy for the solution of the mesh PDE based on a stochastic

domain decomposition method recently proposed by Acebrón et al. [1]. In many situations it is

mesh quality, not an extremely accurate solution of the mesh PDE, which is important. It is

for this reason the stochastic domain decomposition approach is a viable alternative for mesh

generation.

PDE based mesh generation may be classified by the type of PDE, elliptic or parabolic, linear

or nonlinear, to be solved for the mesh. The equipotential method of mesh generation in 2D was

first presented, to the best of our knowledge, by Crowley [5]. The mesh lines in the physical

co-ordinates x and y are the level curves of the potentials ξ and η satisfying Laplace’s equations
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∇2ξ = 0, ∇2η = 0, (1)

and appropriate boundary conditions which ensure grid lines lie along the boundary of the

domain. The mesh transformation, giving the physical co-ordinates x(ξ, η) and y(ξ, η) in the

physical domain Ωp, can be found either by (inverse) interpolation of the solution of (1) onto a

(say) uniform (ξ, η) grid or as Winslow [25] showed, by directly solving the inverse equations of

(1), namely

αxξξ − 2βxξη + γxηη = 0, αyξξ − 2βyξη + γyηη = 0, (2a)

where

α = x2
η + y2

η, β = xξxη + yξyη and γ = x2
ξ + y2

ξ . (2b)

System (2) can be solved directly for the mesh transformations x(ξ, η) and y(ξ, η) using a uniform

grid for the variables ξ and η belonging to the artificial computational domain Ωc.

In this paper, we will exclusively work with mesh generators in the physical space, i.e. yielding

ξ = ξ(x, y) and η = η(x, y). As mentioned, a convenient way to invert the mesh transformation

from the physical space Ωp to the computational space Ωc is through interpolation. That is, once

the numerical solution yielding ξij = ξ(xi, yj), ηij = η(xi, yj) is obtained one obtains the values

for xij = x(ξi, ηj), yij = y(ξi, ηj) from two-dimensional interpolation. An alternative would be

to numerically solve the hodograph transformations(
xξ xη

yξ yη

)
=

1

J

(
ηy −ξy
−ηx ξx

)
,

where J = ξxηy − ξyηx. As this leads to another system of PDEs, we choose the interpolation

method to obtain the physical mesh lines. In practice, this inversion to the physical co–ordinates

is not necessary. Instead one could transform the physical PDE of interest into the computational

co–ordinate system.

Dvinksy [6] discusses the existence and uniqueness of such mesh transformations in the con-

text of one–to–one harmonic maps. He demonstrates that the solutions to (1), and hence (2),

will be well–defined if the (ξ, η) domain is convex. Since we construct this domain ourselves this

condition can always be satisfied.

Godunov and Prokopov [8], Thompson et al. [22,23] and Anderson [2], for example, add terms

to (1) and (2) to better control the mesh distribution and quality. Winslow [26] generalizes (1)

by adding a diffusion coefficient D(x, y) > 0 depending on the gradient or other aspects of the

solution. This gives the linear elliptic mesh generator

∇ · (D∇ξ) = 0 and ∇ · (D∇η) = 0, (3)

of interest in this paper. The diffusion coefficient D characterizes regions where additional mesh

resolution is needed. An example for a mesh in both computational and physical co–ordinates is

depicted in Figure 2 on page 7. This figure shows that the grids in the computational and physical

co–ordinates behave inversely; the areas of grid concentration of the mesh in the computational

co–ordinates coincide with the areas of de-concentration in the physical space and vice versa.

There has been recent work to parallelize nonlinear PDE based mesh generation using on

Schwarz based domain decomposition approaches. In [7], Haynes and Gander propose and an-

alyze classical, optimal and optimized Schwarz methods in one spatial dimension. A numerical
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study of classical and optimized Schwarz domain decomposition for 2D nonlinear mesh genera-

tion has been presented in [9]. Recently, in [4], a monolithic domain decomposition method, si-

multaneously solving a mesh generator similar to (4) coupled to the physical PDE, was presented

for a shape optimization problem. The authors used a overlapping domain decomposition ap-

proach to solve the coupled problem. Here we focus on the linear mesh generation problem only,

detailing the effect of our stochastic domain decomposition method on the generated meshes.

This paper is organized as follows. In Section 2 we review the necessary background material

on the stochastic interpretation of solutions of linear elliptic boundary value problems and

their relation to numerical grid generators. We also briefly discuss the techniques required to

achieve such stochastic solutions numerically. We explain how to couple the stochastic solution

of linear elliptic mesh generators with a domain decomposition approach to obtain a scalable

version of the algorithm. Section 3 illustrates our parallel grid generation strategy. The effect

of smoothing the probabilistically computed interface solutions and the sub-domain solutions

is demonstrated. Section 4 is devoted to further examples of grids computed using stochastic

domain decomposition. Section 5 contains the conclusions of the paper as well as thoughts for

further research directions.

2 Winslow mesh generation using a stochastic domain decom-

position method

In this section, following [1], we describe how to generate adaptive meshes by solving Winslow’s

mesh generator (3) using a non–overlapping domain decomposition and a stochastic representa-

tion of the solution along the artificial interfaces.

2.1 Background

For concreteness, we will consider a two-dimensional linear grid generator of Winslow type

−∇ ·
(

1

w
∇ξ
)

= 0, −∇ ·
(

1

w
∇η
)

= 0,

ξ|∂Ωp = f(x, y), η|∂Ωp = g(x, y),

(4)

where w = w(x, y) > 0 is a strictly positive weight function [12, 25]. This grid generator finds

the stationary solution of spatially dependent diffusion processes, yielding the computational

coordinates ξ = ξ(x, y) and η = η(x, y) in terms of the physical coordinates x and y. For the

sake of simplicity, we restrict ourselves to the case of rectangular physical and computational

domains. As mentioned, Dvinksy [6], then guarantees a well–posed mesh generation problem.

Equations (4) form a system of two decoupled linear elliptic PDEs. It is well known that

for such boundary value problems the solution can be written using methods of stochastic

calculus [16, 18]. In the present case, this solution is conveniently derived from the expanded

form of system (4), which reads

− 1

w
∇w · ∇ξ +∇2ξ = 0, − 1

w
∇w · ∇η +∇2η = 0. (5)

The solution of system (4) has the stochastic representation

ξ(x, y) = E[f(X(τ))], η(x, y) = E[g(X(τ))], (6a)
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where X(t) = (x(t), y(t))T satisfies, in the Îto sense, the stochastic differential equation

dX(t) = − 1

w
∇w dt+ dW(t). (6b)

In the stochastic solution (6), E[·] denotes the expected value, τ is the time when the stochastic

path starting at the point (x, y) first hits the boundary of the physical domain Ωp and W is the

standard two-dimensional Brownian motion [1, 16,18].

As noted in [1], seeking the numerical solution of system (4) using the probabilistic solution

at all the grid points of interest is generally too expensive, especially when compared to direct

or iterative (deterministic) methods to solve the linear system of equations resulting from the

discretization of (4). Efficiency is indeed a crucial factor for grid adaptation, since the grid is

computed in addition to the solution of the physical PDE. This is particularly important for

time-dependent problems where (4) has to be solved in combination with a system of PDEs at

every time step.

To address the expense of the stochastic approach, the key idea put forward in [1] is to use

the probabilistic solution (6) in the context of domain decomposition. The probabilistic solution

is used only to obtain the boundary conditions at the sub-domain interfaces, see Figure 1.

x

y

Figure 1. Domain decomposition using the stochastic approach. The probabilistic solution (6) of the linear

mesh generator (4) is used to compute the exact solution ξ(x, y), η(x, y) at the interface points (solid dots).

The solution on the sub-domains is computed in parallel using a suitable single domain solver with the interface

solutions serving as Dirichlet boundary values.

This approach to domain decomposition has the advantage of being fully parallelizable, as

each sub-domain can be assigned to a single core and thus the grids at the various sub-domains

can be computed completely independently of each other. Once the interface values are ob-

tained with sufficient accuracy the solutions on the sub-domains are only computed once — no

iteration is needed in this domain decomposition approach. In addition, the two-dimensional

random walks required to solve the stochastic differential equations (6b) at each interface point

can be done independently and efficiently using, for example, an implementation on a graphics

processing unit (GPU). We stress here that several Monte-Carlo techniques have already been

successfully realized on GPUs, e.g. for problems in molecular dynamics, statistical physics and

financial mathematics (see [20, 24] for examples), leading to a massive speed-up (often several

orders of magnitude) compared to the conventional CPU solution. The perspective of compati-
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bility with the principles of GPU programming is therefore a highly desirable feature of a new

numerical algorithm.

2.2 Implementation details

We now describe the solution procedure for solving the system of stochastic differential equa-

tions (6b). This system of equations is particularly simple in that it is decoupled, i.e. the

equations for x(t) and y(t) can be solved independently of each other and hence this solution

is fully parallelizable. The components of the two-dimensional Brownian motion dW can be

realized as dWi = 2
√

∆tN(0, 1), for i = 1, 2, where N(0, 1) is a normally distributed random

number with zero mean and variance one [16]. A simple method for integrating the stochastic

differential equations (6b) is to use the Euler–Maruyama method [17] with a time step ∆t.

The crucial part of solving (6) is the correct determination of the exit time τ , i.e. the time

when the stochastic process starting at (x, y) first hits one of the boundaries of Ωp. One of the

simplest possibilities to estimate the exit time is to integrate (6b) using the Euler–Maruyama

method and to determine whether the process leaves the domain at the end of the time step. The

problem with this approach is that one cannot determine whether the true stochastic process

already exited the domain during the time step. It is possible that the true process started

within the domain, left it, but returned to the domain before the end of the time step. This

problem is inherent in all linear time stepping methods. Indeed, we found the Euler–Maruyama

method led to unacceptably large errors in the fully probabilistically generated grid lines close

to the boundaries.

To address this, we implemented the approach proposed in [15], based on exponential time-

stepping. Unlike the Euler–Maruyama scheme, which uses a constant time step ∆t, this ap-

proaches chooses ∆t as an exponentially distributed random variable. That is, each time step

is determined as an independent realization of a distribution with the probability density func-

tion λ exp(−λt), where λ > 0 is a constant parameter. The expected value of an exponentially

distributed random variable X is then E[X] = 1/λ, i.e. as λ→∞, ∆t→ 0.

The central idea behind exponential time-stepping is that it is possible to carry out the

boundary test for the exit time by both explicitly checking if the process has exited the domain

and also using the conditional probability that the process reached a boundary between X(t) and

X(t+δt) [15]. Exponential time-stepping works because this conditional probability is a function

of the boundary itself. It was shown in [15] that for several classes of stochastic differential

equations this conditional probability can be either computed analytically or approximated

numerically with high efficiency. System (6b) constitutes a process of the additive noise class

— a deterministic system (the first term in (6b)) that is superimposed by constant noise (the

second term in (6b)). For such classes of problems, the precise implementation of the exponential

time-stepping method is presented in Section 4.2 of [15]. The use of exponential time-stepping

leads to meshes that are sufficiently accurate throughout the whole domain. In particular, unlike

the Euler–Maruyama results, no problem occurs in the grid lines near the boundaries.

The system of stochastic differential equations (6b) is solved many times, as one needs enough

samples to approximate the expected value in (6a) through the arithmetic mean. Indeed the

main problem with Monte-Carlo techniques is the rather slow convergence rate. The error in

estimating the expected value with the sample mean, using pseudo–random numbers, is known

to be of the order of N−1/2, where N is the number of samples, see e.g. [21].

The main problem with pseudo-random numbers is that a significant fraction of them tend

to cluster in localized regions of the sampling space, while other parts of the domain are under-
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sampled. This variation in the point density is measured through the discrepancy. Sequences

of numbers that fill the sampling space while reducing the discrepancy are called quasi-random

numbers. They can lead to a significant speed-up of the Monte-Carlo method, yielding conver-

gence rates of order N−1 [21]. The downside of quasi-random numbers is that they cannot be

generated in a fully parallel way. Due to their inherent correlation it is necessary to first gen-

erate a sequence and then re-order the single elements of this sequence to break the correlation

amongst the elements. This procedure is not a parallel operation.

Despite the superior convergence properties of Monte-Carlo techniques employing quasi-

random numbers, we choose to use pseudo–random numbers in what follows. Given the relative

low accuracy needed when solving the mesh PDE, we find that the use of a moderate number

of Monte-Carlo simulations (N ≈ 104) with pseudo–random numbers gives sufficiently accurate

meshes. Moreover, as shown in the next section, applying a smoothing procedure to the com-

puted mesh or simply using Monte-Carlo solutions only along the subdomain interfaces has the

potential to further reduce the number of Monte-Carlo simulations needed to obtain a good

quality mesh. At the same time, avoiding the quasi-random numbers prevents the introduction

of a bottleneck in the otherwise fully parallel algorithm of stochastic domain decomposition for

grid generation.

3 A numerical case study

In this section we illustrate the approach described in the previous section, taking care to detail

the effect of each algorithmic choice on the resulting mesh. We illustrate the successive stages

of our implementation by solving the Winslow mesh generator (4) with w = 1/ρ where ρ is the

monitor function

ρ = 1 +R exp(−50(x− 3/4)2 − 50(y − 1/2)2 − 1/2). (7)

In all examples we choose R = 15. In the physical co-ordinates, this monitor function will

concentrate the mesh near x = 3/4 and y = 1/2. It is instructive to note that due to the relation

w = 1/ρ, the region where ρ attains its maximal values is where the mesh in the physical space is

the sparsest. We begin by showing the mesh obtained by solving (4) on single domain, displaying

the mesh in both computational and physical co-ordinates. The entire mesh is then recomputed

using the stochastic method. The effect of the number of Monte–Carlo simulations is shown.

We then compute the mesh stochastically only along the artifical interfaces; the rest of the mesh

is computed using a domain decomposition approach with deterministic sub–domain solves. We

finally show how smoothing can be incorporated to obtain quality meshes while keeping the

number of Monte–Carlo simulations small.

3.1 Mesh quality measures

The effects of the different steps of the proposed algorithm on the meshes can be quantified

by introducing a mesh quality measure. Several mesh quality measures have been proposed

in the literature to quantify properties of adaptive meshes. These measures usually assess

mesh regularity, the degree of adaptivity to the numerical solution, the regularity of mesh

elements in an appropriate metric (defined through the monitor function) or they quantify

equidistribution [12].

In the present case, we restrict ourselves to a comparison of the mesh quality of the domain

decomposition solution with the mesh quality of the single domain mesh. We do not aim to
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evaluate the absolute mesh quality of the single domain solution of the linear mesh generator (4)

here, but rather we are interested in estimating how well the domain decomposition solution

approximates the quality of the single domain grid. This is an important task because a mesh

quality measure can yield a stopping criteria for the probabilistic algorithm as we are not

concerned with finding a perfect numerical solution of the mesh generator (4).

For the sake of simplicity, we will exclusively work with the geometric mesh quality measure

defined by

Q(K) =
1

2

tr(JTJ)√
det(JTJ)

, (8)

where J is the Jacobian of the transformation x = x(ξ, η), y = y(ξ, η) and K is a mesh element

in Ωc, see [12] for more details. This measure has the property Q(K) ≥ 1 with Q(K) = 1 for an

equilateral mesh element only. Probabilistically computed meshes that have not yet converged

usually show several kinks in mesh lines and thus feature grid cells that are far away from

equilateral as compared to the meshes obtained from a deterministic algorithm. Hence Q(K) is

an appropriate measure for our purposes.

3.2 Single domain reference mesh

We first solve system (4) with monitor function (7) on the entire domain Ωp = [0, 1]× [0, 1]. This

mesh will serve as the reference solution for the stochastically generated meshes which follow.

System (4) is discretized with centered finite differences on a uniformly spaced grid in the

physical (x, y) co–ordinates and the resulting system is solved using a Jacobi iteration. We use

the Dirichlet boundary conditions ξ(0, y) = 0, ξ(1, y) = 1, η(x, 0) = 0 and η(x, 1) = 1. This

ensures grid lines on the boundary of the unit square. The values of ξ(x, 0), ξ(x, 1), η(0, y) and

η(1, y) are obtained from solving the one-dimensional forms of the mesh generator (4).
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Figure 2. Left: Numerical solution of the Winslow-type grid generator (4) for the monitor function (7) over the

physical space Ωp = [0, 1] × [0, 1]. Right: The physical mesh lines obtained from the grid on the left using linear

interpolation.

Figure 2 (left) shows the numerical approximation to ξ(x, y) and η(x, y) obtained by solv-

ing (4) using the monitor function (7) on Ωp = [0, 1]× [0, 1] with 29× 29 uniformly chosen grid
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points. On the right of Figure 2 we depict the physical mesh lines obtained by interpolation of

the mesh on the left onto uniformly spaced (ξ, η) co–ordinates. Here, as expected, the regions

of mesh concentration indeed coincide with the maximal values of ρ, near x = 3/4 and y = 1/2.

3.3 Probabilistically computed mesh

It is instructive to display the result that is achieved from solving the Winslow-type mesh

generator (4) for all the grid points using the stochastic solution (6). The result of such fully

probabilistically computed solutions is displayed in Figure 3.
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Figure 3. Left: Grid obtained from the probabilistic solution (6) using λ = 1000 and N = 1000 Monte-Carlo

simulations at each point to estimate the expected value. Right: Same as left, but using N = 10000 Monte-Carlo

simulations.

We choose the exponential time stepping parameter λ = 1000 for both runs. The difference

between Figure 3 (left) and Figure 3 (right) is the number of Monte–Carlo simulations used. On

the left only N = 1000 Monte-Carlo simulations were used to approximate the expected values in

the solution (6a). On the right we use N = 10000 Monte-Carlo runs. Comparing to the reference

solution on the right of Figure 2, the difference in the results is dramatic. This illustrates the

well–known problem that a high number of simulations is needed to obtain the solution of a

PDE with sufficient accuracy from a stochastic representation. As discussed in Section 2, the

theoretical explanation for this finding is the slow convergence rate of Monte-Carlo methods,

which is proportional to N−1/2. It is mainly this slow convergence which has prevented the

wider use of Monte-Carlo techniques in the numerical solution of PDEs. Here we suggest that

the relative lower accuracy requirement for the mesh makes the stochastic formulation, coupled

with the domain decomposition approach to follow, an appealing strategy.

To quantify the above findings, we compute the geometric mesh quality measure (8) for both

the deterministic mesh and the two meshes found by the stochastic algorithm. As Q = Q(K)

is a function of each mesh element K, we only list the maximum and the mean of Q over the

domain, denoted by Qmax and Qmean for the deterministic solution and by QS
max and QS

mean for

the stochastic solution. Comparisons of the stochastic solution and the deterministic solution

are given by the ratios Rmax = Qmax/Q
S
max and Rmean = Qmean/Q

S
mean. We also present l∞, a

measure of how well ρ is captured by the generated mehses. More precisely, we compute the
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linear interpolant of ρ onto the grids obtained using the deterministic and the stochastic solver

yielding ρinterp and ρS
interp, respectively. The l∞ error is then computed as the maximal difference

between ρinterp and ρS
interp, i.e. l∞ = max(|ρinterp−ρS

interp|i), where i runs through all grid points.

We have chosen this error measure as it allows us to compare the maximal deviation of the

interpolated ρ on the stochastically generated mesh to interpolated ρ on the deterministically

generated mesh, and hence provides an additional measure of convergence for the Monte-Carlo

simulation.

Table 1. Mesh quality for grid adapting to monitor function (7). λ = 1000.

N l∞ QS
max QS

mean Rmax Rmean

Qmax = 1.8

Qmean = 1.16

1000 2.23 3.85 1.22 0.47 0.95

10000 1.33 1.9 1.18 0.95 0.98

It can be seen from Table 1 that the probabilistically computed mesh obtained with N = 1000

Monte-Carlo simulations yields relatively poor mesh quality measures when compared to the

mesh obtained from the deterministic algorithm. If we increase the number of Monte-Carlo

simulations to N = 10000 the mesh quality measures found are already reasonably close to the

deterministic case.

3.4 Smoothing of the mesh

The problem with the stochastic representation of the solution of the linear mesh generator (6)

is that usually a very large number of Monte-Carlo simulations is needed to obtain a reasonably

accurate numerical approximation. On the other hand, such a highly accurate numerical solution

might not be absolutely necessary to obtain a good quality mesh from the grid generator (4).

Instead, we show that applying a smoothing operation to a lower accuracy solution of (4) can

yield a high-quality grid.

A type of smoothing algorithm that appears particularly well-suited for this type of problem

is anisotropic diffusion, also referred to as Perona–Malik diffusion,

ξt −∇ · (cξ∇ξ) = 0, cξ = exp(−||∇ξ||2/k2),

ηt −∇ · (cη∇η) = 0, cη = exp(−||∇η||2/k2),
(9)

where k is an arbitrary constant [19]. In image processing, smoothing of this kind is used to

remove noise without significantly affecting the edges of an image. This smoothing operation is

suitable for grids generated with the Monte-Carlo technique as the error in approximating the

solution to (4) will appear as superimposed random noise over the required adapted mesh (the

underlying signal). Anisotropic diffusion of the above form will remove this superimposed noise

while still accurately preserving the regions of grid concentration.

We now apply anisotropic diffusion to the fully probabilistically computed mesh displayed in

Figure 3 (left). For this purpose we discretize (9) with a forward in time and centered in space

(FTCS) scheme. It is usually sufficient to numerically integrate (9) only a few steps starting

with a grid computed using the Monte-Carlo technique to yield a smooth mesh. Consequently,

diffusive smoothing is computationally a rather cheap operation. The result of integrating (9)

to t = 5∆t starting with the mesh shown on the left of Figure 3 using a FTCS discretization

with k = 1000 and ∆t = 10−4 is shown in Figure 4.
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Figure 4. Grid obtained from the probabilistic solution (6) using N = 1000 Monte-Carlo simulations at each

point to estimate the expected value. After the computation, we apply anisotropic diffusion of the form (9) to the

mesh in the computational space. Eq. (9) was discretized using a FTCS scheme with ∆t = 10−4 and k = 1000.

We integrated (9) up to t = 5∆t.

As can be seen by comparing with the single domain solution shown in the right of Figure 2,

a few smoothing operations are able to almost completely eliminate the ’wiggles’ that are typical

of the approximate solution computed using Monte-Carlo techniques. At the same time, the

grid is still properly concentrating near the maximum values of the monitor function (7), i.e., as

expected, anisotropic diffusion properly preserves the signal in the Monte-Carlo solution.

To confirm these qualitative findings we once again compute the geometric mesh quality mea-

sure for the probabilistically computed and smoothed mesh. Here it is particularly instructive

to monitor the mesh quality as a function of the number of total smoothing steps n (quantified

through the final integration time t = n∆t). To have a proper comparison, we also smoothed

the deterministic solution with the respective number of smoothing steps, which leads to the

different absolute mesh quality measures for Qmax and Qmean in Table 2.

Table 2. Mesh quality for grids adapting to monitor function (7), smoothed using (9) for N = 1000 and λ = 1000.

n l∞ Qmax Qmean QS
max QS

mean Rmax Rmean

1 2.25 1.77 1.16 2.45 1.2 0.71 0.97

2 1.83 1.77 1.16 2.44 1.2 0.72 0.97

5 1.72 1.66 1.15 1.83 1.18 0.91 0.98

10 1.19 1.54 1.15 1.57 1.16 0.98 0.99

3.5 Domain decomposition solution

Unless a large number of cores, equal to the total number of mesh points, is available, the

stochastic solution of (4) at all points would still be quite expensive. In the context of domain

decomposition we only evaluate the stochastic form of the solution at a few mesh points along

the domain interfaces and then compute the solution deterministically at all the remaining grid

points. As will be shown below, the meshes obtained from this stochastic–deterministic domain
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decomposition technique are usually much smoother than the meshes shown in Figure 3. Thus,

fewer (or no) smoothing sweeps will be required.

We now determine solution of the mesh generator (4) with the monitor function (7) using

the domain decomposition technique outlined in Section 2. For the sake of simplicity we restrict

ourselves to the case of four square sub-domains. The probabilistic solutions at the interfaces

are computed using λ = 10000 and N = 10000.
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Figure 5. Domain decomposition solution for the mesh generator (4) with monitor function (7).

As can be seen from Figure 5 the stochastic–deterministic approach to solve (4) almost

perfectly reproduces the single domain solution shown in Figure 2 (right). This finding is also

confirmed with the geometric mesh quality measure, having values QDD
max = 1.80 and QDD

mean =

1.16 for the domain decomposition solution which give rise to the ratios Rmax = 1 and Rmean = 1

when compared to the single domain solution.

No smoothing was applied to obtain the mesh shown in Figure 5. We should nevertheless like

to stress that the smoothing operation proposed in Section 3.4, if needed, can be also achieved

in parallel, as (9) can be applied on each sub-domain separately. That is, equation (9) yields a

local smoothing operation and does not dilute the parallel nature of the proposed algorithm.

The only complication is how to smooth the sub-domain interfaces as they serve as natural

(Dirichlet) boundaries for the smoothing operation (9). Ways to overcome this difficulty include

a pre-smoothing of the interface to ensure that it is sufficiently accurate before being used as

boundary conditions for the sub-domain solves or possibly apply a second smoothing cycle with

shifted sub-domains that have the original interfaces in their interior. We will present an example

for the first possibility in Section 4.

3.6 Interpolation along the interface

If the number of compute cores is limited, a promising approach to further reduce the cost of

the probabilistic part of the domain decomposition algorithm is to avoid computing the solution

stochastically at all the grid points along the interface. Instead we obtain the stochastic solution

at only a few points and approximate the solution at the remaining points using interpolation.

This was suggested in [1], however, we found the meshes obtained by this approach to be quite
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sensitive to the location of these points.

A short study in this optimal placement problem is reported in Figure 6. In Figure 6 (left)

we computed the probabilistic solution at seven equally spaced points along each of the dividing

lines. Linear interpolation is used to obtain the remaining interface points. It is clearly visible

that this procedure does not give the mesh obtained by domain decomposition in Figure 5.

The problem is that local maxima and minima in the monitor function is missed and hence

proper transitions between regions of grid concentration and de-concentration are not captured.

We also tested more sophisticated interpolation strategies such as splines, cubic interpolation

and Chebychev interpolation, but the results obtained are nearly identical. We conclude that,

unlike the results reported in [1], the placement of points is crucial if interpolation is used to

approximate the interface conditions for the domain decomposition for mesh generation.
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Figure 6. Left: Domain decomposition solution for the mesh generator (4) with monitor function (7). The solution

was evaluated at seven equidistant points along each dividing line probabilistically. Linear interpolation was used

to obtain the remaining interface points. Right: Same as left, but solution was evaluated probabilistically at the

maxima and minima of the first and second derivatives of the monitor function at the interface. This gave seven

points where the mesh was computed with Monte-Carlo simulations. Linear interpolation was used to obtain the

remaining interface points.

In Figure 6 (right) we determined the points along the dividing lines where the solution is

computed probabilistically based on the properties of the monitor function ρ. In particular, we

required placement of the points near the maxima and minima of ρx and ρxx along the horizontal

dividing line and ρy and ρyy along the vertical dividing line. This leads to a total of seven points

along each dividing line where the solution has to be computed using the Monte-Carlo technique.

Note that these points are not equally spaced as they were in the previous case. The remaining

interface points are then approximated using linear interpolation.

The solution found using this rather simple placement criteria gives a mesh very close to the

solution shown in Figure 5 but at only a fraction of the computational cost, or cores, required by

the original stochastic domain decomposition solution. Smoothing of the mesh shown could be

used to further improve the smoothness in the transition of the grid lines across the interfaces.

These qualitatively visible differences in Figure 6 are not clearly reflected in our chosen

mesh quality measure, which yields essentially the same results (R = 1) for both equally and
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’optimally’ placed interfaced points. On the other hand, the l∞ error found when using equally

spaced points, l∞ = 4.91, is more than five times as large as the l∞ error obtained when we

strategically place the points where the stochastic solution is obtained, l∞ = 0.92. This shows

a larger deviation from the single domain solution.

The one drawback of this placement approach is that it is not obvious apriori how to determine

how many and at what locations the solution is best determined probabilistically. For large

meshes in real-world applications, a possible trade-off would be to place the points near the

most pronounced features of the monitor function only and smooth the resulting meshes over a

few cycles.

4 Further examples

Having explained the technique and the issues involved, in this section we present additional

examples to demonstrate the meshes generated using our stochastic domain decomposition al-

gorithm on well known test problems.

We first choose the monitor function

ρ =
√

1 + α(R2 exp(R(x− 1))2 sin(πy)2 + (1− exp(R(x− 1)))2 cos(πy)2π2) (10)

with α = 0.7 and R = 15. This monitor function was used in [9, 13] to generate meshes using a

nonlinear mesh generator.
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Figure 7. Left: Single domain solution of the mesh generator (4) using the monitor function (10). Right:

The associated domain decomposition solution. The solution along the interfaces was computed using (6) with

N = 10000 Monte-Carlo simulations and λ = 10000 as the parameter of the exponential distribution.

Figure 7 (left) displays the single domain mesh obtained by solving Winslow’s generator (4)

using a Jacobi iteration. The corresponding domain decomposition solution with four sub-

domains is depicted in Figure 7 (right). Here, we used λ = 10000 and N = 10000 to compute

the solution probabilistically along all the points on the interfaces. No smoothing was applied

to the final mesh.

The mesh quality measures for the domain decomposition solution are QDD
max = 1.69 and

QDD
mean = 1.14, respectively, with corresponding ratios Rmax = 0.99 and Rmean = 1 compared to
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the single domain solution. That is, in terms of the geometric mesh quality measure, the single

domain solution is almost perfectly approximated.

The next example uses the monitor function

ρ =
1

1 + α exp(−R(y − 1/2− 1/4 sin(2πx))2)
(11)

with α = 10 and R = 50.
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Figure 8. Left: Single domain solution of the mesh generator (4) using the monitor function (11). Right:

The associated domain decomposition solution. The solution along the interfaces was computed using (6) with

N = 10000 Monte-Carlo simulations and λ = 10000 as the parameter of the exponential distribution.

The single domain solution for this example is depicted in Figure 8 (left). The mesh re-

flects both the large scale features (the sinusoidal wave) and smaller scale variations (across the

wave) in the monitor function. In Figure 8 (right) we show the domain decomposition solution

using four sub-domains. The parameters for the stochastic solver again were λ = 10000 and

N = 10000. We used the stochastic solver to compute all the points along the interfaces. No

smoothing is applied to the final mesh. It can be seen in Figure 8 (right) that the domain

decomposition solution has several kinks which are slightly more pronounced than in the single

domain mesh.

We now present the results of four different versions of the domain decomposition solution

in Figure 9 and Figure 10. In Figure 9 we contrast the effect of global smoothing (left) versus

local smoothing on each of the sub-domains (right). As was indicated in Section 3 the global

smoothing is a sequential operation whereas smoothing on the sub-domains can be carried out in

parallel. The global smoothing operation leads to a mesh that varies very smoothly throughout

the whole domain. The locally smoothed mesh is much improved as well (also compare the

mesh quality measures reported in Tables 3 and 4) and has less kinks when compared to the

original domain decomposition solution shown in Figure 8 (right). The remaining discontinuities

could be further reduced by applying a second smoothing cycle over shifted sub-domains, i.e.

by re-assigning the sub-domains in such a manner that the original interfaces lie within the new

sub-domains and then re-apply the smoothing. Once again, this would not sacrifice the overall

parallel nature of the proposed algorithm.
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Figure 9. Left: Domain decomposition solution of the mesh generator (4) using the monitor function (11). Five

smoothing cycles using (9) with ∆t = 10−4 and k = 1000 were applied on the whole domain. Right: Smoothing

is applied on each of the sub-domains separately.
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Figure 10. Left: Domain decomposition solution of the mesh generator (4) using the monitor function (11).

The probabilistically computed interface solution was smoothed using weighted linear least squares and a second

degree polynomial model. Right: Same as right, but additionally five smoothing cycles using (9) with ∆t = 10−4

and k = 1000 were applied on each of the sub-domains separately.

In Figure 10 we demonstrate the effect of pre-smoothing the stochastically computed interface

solution. In Figure 10 (left), the values of ξ and η have been smoothed using weighted linear least

squares and a second degree polynomial model (provided by the Matlab function smooth) before

using the interface solution as the boundary values for the solver on each of the sub-domains.

In general we see that only a few interface solutions are required; smoothing of the interface is

much cheaper than smoothing the whole domain or the sub-domains. In Figure 10 (right), we

demonstrate the effect of both smoothing the interface and applying the diffusive smoothing (9)

on each of the sub-domains.
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We now present the results for the geometric mesh quality measure for the different variants

of the stochastic–deterministic domain decomposition algorithm discussed above. In particular,

the geometric mesh quality measures for the grids computed using monitor function (11) are

determined for two series of numerical experiments. In Table 3, we keep the number of Monte-

Carlo runs constant, N = 10000, and vary the parameter of the exponential distribution λ; in

Table 4 we vary N and keep λ = 5000 constant.

Table 3. Mesh quality for grids adapting to monitor function (11) with N = 10000 Monte–Carlo simulations.

λ l∞ QDD
max QDD

mean Rmax Rmean

No smoothing

Qmax = 3.86

Qmean = 1.67

1000 1.18 4.44 1.76 0.87 0.95

2000 0.91 4.29 1.72 0.90 0.97

5000 0.49 3.98 1.7 0.97 0.98

10000 0.4 3.9 1.69 0.99 0.99

Global smoothing

Qmax = 3.6

Qmean = 1.62

1000 1.04 3.96 1.71 0.91 0.95

2000 0.64 3.79 1.67 0.95 0.97

5000 0.45 3.67 1.64 0.98 0.99

10000 0.44 3.67 1.62 0.98 1

Sub-domain smoothing

Qmax = 3.6

Qmean = 1.62

1000 1.36 4.24 1.69 0.85 0.96

2000 0.92 3.83 1.65 0.94 0.98

5000 0.75 3.79 1.62 0.95 1

10000 0.74 3.67 1.62 0.98 1

Interface smoothing

Qmax = 3.86

Qmean = 1.67

1000 1.40 4.89 1.76 0.79 0.95

2000 0.82 4.54 1.73 0.85 0.97

5000 0.5 4.39 1.69 0.88 0.99

10000 0.41 4.29 1.69 0.9 0.99

Sub-domain and

interface smoothing

Qmax = 3.6

Qmean = 1.62

1000 1.52 4.29 1.69 0.84 0.96

2000 1.1 4.8 1.65 0.75 0.98

5000 0.8 4.04 1.62 0.89 1

10000 0.75 4.09 1.62 0.88 1

Tables 3 and 4 illustrate that both the value of λ, the exponential time-stepping parameter,

and the number of Monte-Carlo simulations N affect the quality of the resulting mesh. The

larger λ and N , the better the domain decomposition mesh approximates the quality of the

single domain mesh. This is expected since as λ→∞ and N →∞ the numerical approximation

of the stochastic representation of the solution to the linear mesh generator (4) approaches the

deterministic solution and thus converges to the single domain result.

From Tables 3 and 4 it can be seen that the meshes obtained using domain decomposition with

probabilistically computed solution along the interfaces give good quality meshes (compared to

the single domain solution) with very few Monte-Carlo simulations (low N) at relatively coarse

mean time steps (low λ). Global and local smoothing on the sub-domains can bring the mesh

quality of the domain decomposition solution slightly closer to the single domain case, but these

improvements are quite minor for the present example. Pre-smoothing of the interface does not
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Table 4. Mesh quality for grids adapting to monitor function (11) with λ = 5000.

N l∞ QDD
max QDD

mean Rmax Rmean

No smoothing

Qmax = 3.86

Qmean = 1.67

1000 0.74 5.44 1.72 0.71 0.97

2000 0.66 3.99 1.69 0.97 0.99

5000 0.4 3.9 1.69 0.99 0.99

10000 0.45 3.9 1.72 0.99 0.97

Global smoothing

Qmax = 3.6

Qmean = 1.62

1000 0.762 3.79 1.65 0.95 0.98

2000 0.47 3.83 1.64 0.94 0.99

5000 0.36 3.75 1.64 0.96 0.99

10000 0.44 3.67 1.62 0.98 1

Sub-domain smoothing

Qmax = 3.6

Qmean = 1.62

1000 1.15 4.5 1.64 0.8 0.99

2000 0.94 4 1.64 0.89 0.99

5000 0.82 3.96 1.62 0.91 1

10000 0.74 3.67 1.62 0.98 1

Interface smoothing

Qmax = 3.86

Qmean = 1.67

1000 1.47 4.82 1.7 0.8 0.98

2000 0.95 4.95 1.7 0.78 0.98

5000 0.59 4.95 1.7 0.78 0.98

10000 0.41 4.29 1.69 0.9 0.99

Sub-domain and

interface smoothing

Qmax = 3.6

Qmean = 1.62

1000 1.1 6 1.65 0.6 0.98

2000 0.95 4.86 1.64 0.74 0.99

5000 0.82 4.5 1.64 0.8 0.99

10000 0.75 4.01 1.62 0.88 1

yield any improvement in the case of the monitor function (11); neither does pre-smoothing of

the interface combined with smoothing on the sub-domains, at least not in the measure Q(K).

The above results confirm for the present example that the probabilistic approach to domain

decomposition can yield good quality meshes at relatively cheap computational costs. Different

ways of smoothing have the potential to improve the mesh quality of domain decomposition

grids further but ultimately may not be necessary at all.

5 Conclusions and outlook

In this paper we proposed a new method for computing PDE based adaptive meshes using a

stochastic domain decomposition approach. The main idea derives from the study proposed

in [1] to use probabilistic domain decomposition to solve linear boundary value problems. As

various types of adaptation strategies fit into this class of problems, this probabilistic take

on domain decomposition is readily applicable to the mesh generation problem. The main

motivation behind this work is to find an algorithm for the construction of meshes that is fully

parallelizable as it allows one to determine the single sub-domain solutions without information

exchange across the interface of neighboring sub-domains. In addition, the relative low accuracy

requirement for mesh generation suggests that quality meshes can be found with only a moderate
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number of Monte–Carlo simulations along the interface and hence this mesh generation problem

is well suited to this probabilistic domain decomposition approach.

We have restricted ourselves to a simple linear mesh generator of Winslow type. Despite being

amongst the simplest PDE based mesh generators, we found the Winslow potential system suit-

able to demonstrate several typical issues to be addressed when using a combined probabilistic–

deterministic solver. These issues include ways to smooth the mesh in order to avoid an excessive

number of Monte-Carlo simulations as well as the optimal placement problem to determine the

locations at the sub-domain interfaces where the solution is needed probabilistically. The for-

mer issue can be conveniently tackled using anisotropic diffusion to smooth out kinks that are

inevitable due to the local nature of the Monte-Carlo simulations while properly preserving

the regions of grid concentration and de-concentration. The latter problem of computing only

few points along the sub-domain interfaces and hence further reducing the number of Monte-

Carlo simulations needed is more difficult and ultimately boils down to a trade–off between the

required grid smoothness and available computational resources. We found that placing the

points near the maxima and minima of the first and second derivatives of the monitor function

along the interfaces yields a sufficiently smooth mesh that can be determined at a fraction of

the computational efficiency incurred if all interface points are obtained probabilistically. More

sophisticated criteria for this optimal placement problem will be investigated in the future.

A more challenging problem is the generalization of the proposed method to nonlinear mesh

generators. It is well known that linear mesh generators of Winslow type work reasonably well

for problems for which isotropic mesh generation suffices. In turn, if more control over the grid

adaptation is required, one usually has to resort to nonlinear mesh generators, e.g. those that

are based on equidistribution and alignment, see e.g. [11,12]. The problem is that for nonlinear

partial differential equations, very few stochastic solution representations are known. As the

existence of a stochastic representation is at the heart of the proposed algorithm, it is crucial to

either find a nonlinear mesh generator for which such a stochastic solution exists or to modify

the problem so that it fits again into the realm of linear partial differential equations. The latter

possibility may be realized through an appropriate linearization of the nonlinear mesh equations.

This is the subject of current investigations.

A further crucial step to refine the proposed algorithm will be the development of a stopping

criteria for the Monte-Carlo simulations. The task of generating meshes by solving a system of

PDEs is different from the problem of obtaining numerical solutions of physical PDEs. For the

former problem the mesh PDE is usually only a means to realize underlying computational grids

with specific properties (e.g. isotropic vs. anisotropic adaptation). This means that it is usually

not necessary to solve the mesh generation system with high accuracy, i.e. one can stop the

solution procedure once a suitably smooth mesh is obtained. The derivation of proper stopping

criteria for the mesh generation process will be another important source for improving the

computational cost of the proposed algorithm. The main idea is to continuously evaluate the

quality of the current candidate mesh and to stop or continue the solution procedure depending

on whether a specified mesh quality threshold is reached. This strategy is fully compatible

with the probabilistic computation of the interface solution due to the additive properties of the

expected value.

As mentioned, the standard way to speed up Monte-Carlo simulations is to use quasi-random

numbers instead of pseudo-random numbers. Using quasi-random numbers was a crucial factor

in [1] to obtain more accurate numerical solutions using the probabilistic domain decomposition

method. In this study we decided to use pseudo-random numbers only, as quasi-random numbers
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cannot be computed in parallel. Introducing this potential bottleneck in the algorithm does not

appear justified for the mesh generation problem since a good quality mesh can be found without

running the stochastic simulation to convergence. We reserve the more careful study of this issue

for future work.

In addition, it is necessary to do a careful comparision between this probabilistic DD approach

and the more standard application of DD for mesh generation, cf. [7, 9]. The candidates for

comparison include an optimized Schwarz approach, using DD as a preconditioner for the solving

(3) or in a Krylov–Newton–Schwarz framework for nonlinear mesh generation.
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