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Abstract. Moving mesh methods based on the equidistribution principle are powerful techniques
for the space-time adaptive solution of evolution problems. Solving the resulting coupled system of
equations, namely the original PDE and the mesh PDE, however, is challenging in parallel. Recently
several Schwarz domain decomposition algorithms were proposed for this task and analyzed at the
continuous level. However, after discretization, the resulting problems may not even be well posed,
so the discrete algorithms requires a different analysis, which is the subject of this paper. We prove
that when the number of grid points is large enough, the classical parallel and alternating Schwarz
methods converge to the unique monodomain solution. Thus, such methods can be used in place
of Newton’s method, which can suffer from convergence difficulties for challenging problems. The
analysis for the nonlinear domain decomposition algorithms is based on M–function theory and
is valid for an arbitrary number of subdomains. An asymptotic convergence rate is provided and
numerical experiments illustrate the results.
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1. Introduction. The numerical simulation of partial differential equations (PDEs)
can often benefit from the use of non-uniform meshes chosen to adapt to the local
solution structures, especially in cases where the solutions vary over disparate space
and/or time scales. In this article, we consider a class of r-refinement or moving
mesh methods. This PDE-based mesh generation approach adapts an initial (typi-
cally uniform) grid by relocating a fixed number of mesh nodes while preserving the
mesh topology. The mesh is determined by solving a so-called moving mesh PDE
(MMPDE) which is coupled to the physical PDE of interest.

In its simplest form, the r-refinement technique is guided in large part by the
equidistribution principle (EP) of de Boor [15] and Burchard [7]. In one dimension,
the EP seeks a mesh so that the error contribution on each interval is the same. This
naturally places mesh points closer together in regions of the physical space Ωp where
the error in the solution u(t, x) is large. Mathematically, given some positive measure
of the error, M(t, x, u), for x ∈ Ωp and t ∈ [0, T ], the EP requires that the mesh points
xi, i = 0, . . . , N , satisfy∫ xi

xi−1

M(t, x̃, u) dx̃ ≡ 1

N

∫ 1

0

M(t, x̃, u)dx̃.

The function M is referred to as the monitor or mesh density function.
In the continuous setting, we seek a time dependent mesh transformation between

an underlying computational coordinate ξ ∈ Ωc and the physical coordinate, x ∈ Ωp,
so that ∫ x(ξi,t)

0

M(t, x̃, u) dx̃ =
i

N
θ(t) ≡ ξiθ(t), (EP)
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where θ(t) ≡
∫ 1

0
M(t, x̃, u) dx̃ is the total error in the solution. It follows directly, by

differentiating the continuous form of (EP), that the required mesh transformation
satisfies, for all t, the nonlinear differential equation

∂

∂ξ

{
M(t, x(ξ, t), u)

∂

∂ξ
x(ξ, t)

}
= 0. (1.1)

For time dependent problems the EP is often relaxed [30], and the mesh may be
found by solving

∂x

∂t
=

1

τ

∂

∂ξ

(
M(t, x(ξ, t), u)

∂x

∂ξ

)
. (MMPDE5)

The relaxation parameter τ is chosen in practice (see [29]) so that the mesh evolves
at a rate commensurate with that of the physical solution u(t, x). A parabolic mesh
equation provides a degree of temporal smoothing for the mesh generation problem.
Coupling (MMPDE5) with a time dependent physical PDE and discretizing in space
gives a initial value problem to solve. In contrast, coupling (1.1) with a physical
PDE and discretizing in space gives an often more difficult DAE problem. The well-
posedness of the steady mesh generation problem (1.1) and the semi-discretized (in
time) form of (MMPDE5) may be found in [22]. A thorough treatise of r-refinement
methods may be found in the recent book [32].

The mesh generators (1.1) and (MMPDE5) depend on the physical solution u
which itself is the unknown solution of a physical PDE. In practice, this coupled
system of DEs may be solved using the MP iterative procedure [32]. An initial
guess for the mesh is chosen and the physical PDE is solved to give an approximate
solution. This mesh and physical solution can be used to evaluate M and then (1.1)
or (MMPDE5) can be solved for the new mesh, and the process may be repeated.
This is in contrast to the approach, taken in MOVCOL [31] for example, which solves
for the mesh and physical solution as one large simultaneous system.

Recently we have been interested in the parallel solution of PDEs on (moving)
equidistributing grids. Our solution strategy introduces spatial parallelism in both
the computation of the underlying meshes and the physical PDE by a domain decom-
position (DD) approach. DD solves a PDE by divide and conquer: the spatial domain
Ω is partitioned into overlapping or non-overlapping subdomains, thus reformulating
the original PDE into an equivalent coupled system of PDEs which is solved by it-
eration. The coupling is provided by transmission conditions which are designed to
appropriately match solutions on neighboring subdomains. The matching is imposed
in a way which accelerates the convergence of the DD iteration and to maintain as
much coarse grain granularity in the computation as possible. This allows implemen-
tation on a distributed memory architecture using MPI (for example). A stochastic
DD approach for mesh generation in 2D which does not require iteration has recently
been considered in [4].

Another benefit of the DD approach is its robustness relative to other nonlinear
solution schemes. When the monitor function M is “difficult” (e.g. highly oscillatory),
Newton’s method often fails to converge when applied to the discretized versions of
(EP) and (MMPDE5). Then it is natural to divide the interval [0, 1] into several
subdomains to obtain smaller, “easier” problems, and use a DD iteration to obtain
the global solution. We will illustrate this approach in Section 6.3.

In [22], various parallel Schwarz algorithms were presented to solve (1.1) and the
semi-discretized (in time) form of (MMPDE5) using domain decomposition in the
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computational co-ordinate ξ. These algorithms were analyzed at the continuous level,
were shown to converge, and contraction rates obtained. Alternating algorithms,
which give faster convergence at the cost of losing immediate parallelization, were
presented in [28]. These analyses assume M is a function of the required mesh only,
as is the case in the MP procedure mentioned above.

In practice these Schwarz methods have to be discretized for implementation. For
instance, (1.1) can be discretized as

M̃(xi, xi+1)(xi+1 − xi)− M̃(xi−1, xi)(xi − xi−1) = 0, i = 1, . . . , N − 1, (1.2)

x0 = xL, xN = xR,

where xL = x(0) and xR = x(1) are the boundary conditions, and the quantity
M̃(u, v) is chosen so that (1.2) is a consistent discretization of (1.1). For example,
M̃(u, v) = M((u + v)/2) and M̃(u, v) = (M(u) + M(v))/2 gives the midpoint and
trapezoidal discretizations respectively.

Likewise, we discretize (MMPDE5) using finite differences in space and the θ
method in time, 1

2 ≤ θ ≤ 1, to obtain the update from t[ν] to t[ν+1] as the solution of

x
[ν+1]
i − x[ν]

i

∆t
− θ

τ∆ξ2

(
M̃(x

[ν+1]
i , x

[ν+1]
i+1 )(x

[ν+1]
i+1 − x

[ν+1]
i )− M̃(x

[ν+1]
i−1 , x

[ν+1]
i )(x

[ν+1]
i − x[ν+1]

i−1 )
)

(1.3)

− (1− θ)
τ∆ξ2

(
M̃(x

[ν]
i , x

[ν]
i+1)(x

[ν]
i+1 − x

[ν]
i )− M̃(x

[ν]
i−1, x

[ν]
i )(x

[ν]
i − x

[ν]
i−1)

)
= 0,

x
[ν+1]
0 = xL x

[ν+1]
N = xR.

for i = 1, . . . , N − 1.
The goal of this paper is to prove that whenever the number of grid points N is

large enough, the parallel and alternating Schwarz algorithms applied to the discrete
problems (1.2) and (1.3) do indeed converge to the discrete monodomain solution.
We will also estimate the rate of convergence in terms of the number of grid points
and parameters related to the monitor function M . It is important to note that the
analysis of the discrete algorithms is not a simple extension of the continuous theory
presented in [22, 28]. That analysis depended heavily on implicit integral representa-
tions of the subdomain solutions and on properties of those integral representations.
These properties do not carry over once quadrature has been applied. In fact, even
in the single-domain case, the discretized problem may not be well-posed when the
number of grid points is not large enough, see Example 2.1, and also Xu et al. [48],
where the authors considered quadrature using piecewise constant or linear polyno-
mials in the context of de Boor’s algorithm. Instead, the theory here relies heavily on
the notions of nonlinear M -functions and the method of super- and subsolutions in
Rn popularized by Ortega and Rheinboldt, see for example [44, 41].

The literature involving DD approaches for linear elliptic PDEs is vast, see the
extensive books [47, 39]. We focus in this paper on Schwarz methods, since these
methods have been studied for time dependent problems in two fundamentally dif-
ferent approaches: the more classical approach, in which one applies the alternating
or parallel Schwarz method to the sequence of elliptic problems obtained from semi-
discretization (in time) of the PDE [8, 9], or the more recent approach, where one
decomposes the space-time domain and applying the Schwarz waveform relaxation al-
gorithm [5, 24, 25]. For both approaches, optimized variants have been developed, see
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[18] and the references therein for the first, and [21, 19, 20, 2] for the second approach.
The linear theory, however, does not apply to the mesh PDEs considered here, since
they are highly nonlinear. While DD methods have been applied successfully to a
large variety of nonlinear problems (see e.g. [27, 3] for porous media flow problems,
[45, 1] for problems from physiology, [26] for nonlinear parabolic systems, and [14] for
the compressible Navier–Stokes equations), comparably much less has been written
about the analysis of DD methods for nonlinear PDEs; see [10, 38, 37, 36, 16, 6, 46]
for the steady case, and [17, 23] for evolution problems.

There are two common alternatives to the approach described in this paper. In
the first, known as the Newton–Krylov–Schwarz (NKS) method, one discretizes the
global nonlinear problem and solves the nonlinear algebraic equations with an inex-
act Newton method. The linear system that produces a Newton step is solved using
a preconditioned Krylov method, where the inner (linear) iterations can be paral-
lelized using a DD preconditioner. In the second approach, known as the nonlinear
Additive Schwarz Preconditioned Inexact Newton (ASPIN) method, the discretized
global nonlinear problem is not solved directly, but is replaced by a ‘preconditioned’
nonlinear function that has the same set of solutions as the original. Typically, the
preconditioned function is a sum of local solutions of subdomain problems, so that it
can be evaluated in parallel; thus, it is the analogue of the additive Schwarz method
for linear problems. The preconditioned nonlinear problem is then solved using an
inexact Newton method without additional linear preconditioning. See [11, 12, 42, 34]
for more details. More recently, a two-level ASPIN algorithm has been proposed and
studied in [35]. The multi-level approach and coarse space allows one to deal with de-
terioration of the convergence rate of the DD algorithm as the number of subdomains
increases.

The paper is organized as follows. In Section 2, we begin by illustrating an ex-
ample of (1.2) which is not well-posed. Then we introduce notation and review the
main theoretical tools used in our analysis, namely the theory of M -functions. We
then proceed in Sections 2.2 and 2.3 to specify sufficient conditions which guarantee
the discrete systems for steady and time dependent mesh generation are M -functions.
Our convergence results rely on the existence of super and subsolutions for the discrete
systems; this is demonstrated in Section 3. Section 4 provides the main convergence
results for both the parallel and alternating Schwarz methods for the discrete mesh
generators. The asymptotic convergence rate of the discrete parallel Schwarz is given
in Section 5, where we also show that the convergence rate coincides with the contin-
uous analysis in the fine-grid limit. In Section 6, we illustrate our theoretical results
with numerical examples, show the increased robustness of the DD approach relative
to Newton’s method, and illustrate the use of DD within the MP iteration approach.
Finally, we draw some conclusions in Section 7.

2. Uniqueness of solutions to the discrete equidistribution problem.
As we mentioned in the introduction, once the equidistribution equation (1.1) is dis-
cretized by a quadrature rule, it is no longer clear that a unique solution always exists.
We start this section by an example showing non-uniqueness of the discrete solution
when there are not enough points on the grid.
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Example 2.1. Consider the positive function M : [0, 1] → R+ shown in Figure
2.1, defined as

M(x) =


1 + 30x− 171

4 x2, 0 ≤ x ≤ 2
3 ,

4−5x
2x−1 ,

2
3 ≤ x ≤

3
4 ,

1
7 (836− 2496x+ 2328x2 − 640x3), 3

4 ≤ x ≤ 1.

This M is chosen so that M(0) = 1, M(1) = 4, and the function is continuously

Fig. 2.1. An example mesh density function leading to a non-unique mesh transformation.

differentiable at 2/3 and 3/4. Suppose we wish to solve the steady mesh generation
problem with exactly one interior node α, i.e., we want to find α ∈ (0, 1) such that∫ α

0

M(u) du =

∫ 1

α

M(u) du.

The solution to the continuous problem is unique, with α ≈ 0.38. However, if we
replace the integral by the trapezoidal rule, i.e., if we solve

α
M(0) +M(α)

2
= (1− α)

M(α) +M(1)

2
, (2.1)

Then we observe that for 2
3 ≤ α ≤

3
4 , the left hand side of (2.1) becomes

α
M(0) +M(α)

2
=
α(2α− 1 + 4− 5α)

2(2α− 1)
=

3

2
· 1− α

2α− 1
,

and the right hand side gives

(1− α)
M(α) +M(1)

2
=

(1− α)4− 5α+ 4(2α− 1)

2(2α− 1)
=

3

2
· 1− α

2α− 1
.

Thus, every α in the interval [ 2
3 ,

3
4 ] is a solution of (2.1), so the discrete problem,

defined on only 3 nodes, is not well-posed.
The problem in the above example is that there are too few points in the grid

to “nail down” the area under the curve with sufficient precision to obtain a unique
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solution. One of the main theoretical results of this paper states that whenever the
grid is fine enough (where ‘fine enough’ depends on the mesh density function M),
the discrete problem also has a unique solution. The main idea is to show that the
equidistribution equations satisfy the M -function property in the sense of Ortega and
Rheinboldt [44, 41] whenever the grid is fine enough. Uniqueness then follows from
the M -function structure; in addition, the convergence of the parallel and alternating
Schwarz methods is also a consequence of this M -function structure.

2.1. M-functions: definitions and properties. Consider a finite dimen-
sional system of nonlinear equations F (x) = 0 where F : D ⊂ Rn → Rn and
x = (x1, x2, . . . , xn)T is a vector of unknowns. We will refer to the ith equation in
the system as fi(x). The natural partial ordering (component-wise) on Rn is defined
by

x ≤ y, x,y ∈ Rn if and only if xi ≤ yi, for i = 1, . . . , n.

We will let ei, i = 1, . . . , n denote the i-th standard basis vector in Rn.
We begin by defining isotone and antitone mappings and then diagonally isotone

and off-diagonally antitone mappings, see [41].
Definition 2.2. A mapping F : D ⊂ Rn → Rn is isotone (antitone) if for

all x, y ∈ D, F (x) ≤ F (y) (F (x) ≥ F (y)) whenever x ≤ y. It is strictly isotone
(antitone) if F (x) < F (y) (F (x) > F (y)) whenever x < y.

Definition 2.3. A mapping F : D ⊂ Rn → Rn is diagonally isotone if, for any
x ∈ D, the n functions fi(x+tei), i = 1, . . . , n, are isotone when x+tei ∈ D. F is off-
diagonally antitone if, for any x ∈ Rn, the functions fi(x+ tej), i 6= j, i, j = 1, . . . , n,
are antitone when x + tei ∈ D.

Collatz [13] introduced the following converse notion of isotonicity on partially
ordered topological spaces.

Definition 2.4. A mapping F : D ⊂ Rn → Rn is inverse isotone if for any
x,y ∈ D, F (x) ≤ F (y) implies x ≤ y.

The following notion of an M -function was originally introduced by Ortega and
developed by Rheinboldt [44].

Definition 2.5. A mapping F : D ⊂ Rn → Rn is an M -function if F is inverse
isotone and off-diagonally antitone.

Theorem 2.6 (Uniqueness). Let F : D ⊂ Rn → Rn be an M -function and
consider the problem F (x) = b, where b ∈ Rn is a given right hand side. Then the
solution x ∈ D, if it exists, must be unique.

Proof. Let x and y be two solutions satisfying F (x) = F (y) = b. Then since
F (x) ≤ F (y), the inverse isotonicity of F implies that x ≤ y. On the other hand, we
also have F (y) ≤ F (x), which implies y ≤ x. It follows that x = y, i.e., the solution
is unique.

Of course, the difficulty in determining if a map is a M -function is checking the
inverse isotonicity. A sufficient condition requires the following definition, which first
appeared in [44] and specifies the connectivity of the unknowns through F .

Definition 2.7. Let F : D ⊂ Rn → Rn be off-diagonally antitone. Then a link
(i, j) is strict if the function t 7→ fi(x + tej) is strictly antitone. A path i j exists
if there exists a sequence of strict links (i, j1), (j1, j2), . . . , (jk, j).

A sufficient condition for F : D ⊂ Rn → Rn to be an M -function is given in the
following lemma, a modification of Theorem 5.1 in Rheinboldt [44]. See the Appendix
for a proof of this result.
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Lemma 2.8. Let D be a convex and open subset of Rn. Assume F : D ⊂ Rn → Rn
is off-diagonally antitone, and that for any x ∈ D, the functions qi : Si ⊂ R → Rn
defined as

qi(τ) =

n∑
j=1

fj(x + τei), i = 1, . . . , n, with Si = {τ : x + τei ∈ D },

are isotone. Finally, assume for every i that either qi is strictly isotone, or there
exists a node j = j(i) such that a path j  i exists and qj is strictly isotone. Then F
is an M -function.

Here we are interested in mappings F defined by the simple finite difference
discretizations (1.2) and (1.3). We set h = 1/N and choose the uniform grid ξi =
ih, i = 0, . . . , N , in the computational domain. Since the values x0, x1, . . . , xN in
(1.2) and (1.3) are meant to be samples of a continuous function x(ξ) at ξi, we expect
successive samples xi−1 and xi to be close when the grid is fine enough. Thus, we will
consider the nonlinear mappings defined by (1.2) and (1.3) on the subset D of RN+1

given by

D =

{
x ∈ RN+1 : |xi − xi−1| <

m̌

B
, for i = 1, . . . , N

}
, (2.2)

where m̌ > 0 and B > 0 are constants that depend on the function M(x), to be defined
later. From (2.2) it is clear that D is open and convex, as required by Lemma 2.8.

2.2. Steady mesh generation. Throughout this paper, we assume the two-
point mesh density function M̃(·, ·) satisfies the following conditions:

(C1) there exists constants m̌ and m̂ such that

0 < m̌ ≤ M̃(u, v) ≤ m̂ <∞ for all u, v ∈ R,

and
(C2) M̃(·, ·) is continuously differentiable with respect to each variable, and there

exists a positive constant B <∞ such that∣∣∣∣∣∂M̃∂u (u, v)

∣∣∣∣∣ ≤ B,
∣∣∣∣∣∂M̃∂v (u, v)

∣∣∣∣∣ ≤ B for all u, v ∈ R.

(C3) for every u, v ∈ R such that u ≤ v, there exists ζ ∈ [u, v] such that

M̃(u, v) = M(ζ).

The condition (C3) simply assures consistency between M and M̃ . The constants m̌,
m̂ and B can typically derived from the bounds and Lipschitz constant of the contin-
uous mesh density function M(x). For instance, for the trapezoidal rule M̃(u, v) =
1
2 (M(u) +M(v)), we have B = 1

2 maxu∈R |M ′(u)|.
Remark. Typically M(x) is only defined on the interval [0, 1], since the mesh is

only defined on that interval. However, for the purpose of proving existence, we will
need to evaluate M at points outside the unit interval; this can be done by extending
M(x) smoothly outside [0, 1] in such a way that M becomes constant outside a slightly
larger interval [−xmin, xmax] ⊃ [0, 1]. Thus, it is reasonable to assume that m̌ and m̂
exist, and one can expect these bounds to be close to the maximum and minimum of
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M inside the unit interval. A similar argument goes for the constant B, as long as
the extension does not introduce gradients much steeper than those inside the unit
interval.

We now use Lemma 2.8 to show that H defined by (1.2) is an M -function on D.
Theorem 2.9. The mapping H : D ⊂ RN+1 → RN+1 defined by

hi =


(m̂+ m̌)(x0 − xL), i = 0,

M̃(xi−1, xi)(xi − xi−1)− M̃(xi, xi+1)(xi+1 − xi), i = 1, . . . , N − 1,

(m̂+ m̌)(xN − xR), i = N,

(2.3)

is an M -function on the set D defined in (2.2) if M(x) satisfies the conditions (C1)
and (C2).

Proof. For 1 ≤ i ≤ N − 1, the ith component of H reads

hi = φi−1/2(xi−1, xi)− φi+1/2(xi, xi+1),

where we have introduced the notation φi−1/2 := M̃(xi−1, xi)(xi−xi−1) representing
the discrete flux between xi and xi−1.

The function hi depends on xj only for j = i− 1, i and i+ 1. Computing directly
for i = 1, . . . , N − 1 we have

∂hi
∂xi−1

=
∂φi−1/2

∂xi−1
= −M̃(xi−1, xi) + M̃u(xi−1, xi)(xi − xi−1),

∂hi
∂xi+1

= −
∂φi+1/2

∂xi+1
= −M̃(xi, xi+1)− M̃v(xi, xi+1)(xi+1 − xi).

Here M̃u and M̃v denote the derivatives of M̃(u, v) with respect to its first and second
arguments respectively. Following Lemma 2.8, we begin by showing that F is off-
diagonally antitone on the set D defined in (2.2).

Since the mesh {xi}Ni=0 belongs to D and M̃ is Lipschitz with constant B (from
condition (C2)), we have

M̃u(xi−1, xi)(xi − xi−1) ≤ |M̃u(xi−1, xi)| · |xi − xi−1| < B
m̌

B
= m̌ ≤ M̃(xi−1, xi)

and

−M̃v(xi, xi+1)(xi+1 − xi) ≤ |M̃v(xi, xi+1)| · |xi+1 − xi| < B
m̌

B
= m̌ ≤ M̃(xi, xi+1).

Hence ∂hi

∂xi−1
and ∂hi

∂xi+1
are strictly negative for i = 1, . . . , N − 1. Furthermore,

∂h0/∂xi = 0 for i = 1, . . . , N and ∂hN/∂xi = 0 for i = 0, . . . , N − 1 which implies H
is off-diagonally antitone.

We now construct the functions qi(t) =
∑N
j=0 hj(x + tei), i = 1, . . . , N − 1,

and take derivatives with respect to t. Direct calculation gives dqi/dt = 0 for i =
2, . . . , N − 2, while

dq0

dt
= m̂+ m̌− M̃(x0 + t, x1) + M̃u(x0 + t, x1)(x1 − x0 − t),

dq1

dt
=

d

dt
φ1/2(x0, x1 + t) = M̃v(x0, x1 + t)(x1 + t− x0) + M̃(x0, x1 + t),
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and

dqN−1

dt
= −M̃u(xN−1 + t, xN )(xN − xN−1 − t) + M̃(xN−1 + t, xN ),

dqN
dt

= m̂+ m̌− M̃(xN−1, xN + t)− M̃v(xN−1, xN + t)(xN + t− xN−1).

Using condition (C2) and the assumption that the perturbed mesh x+ tei belongs to

D it is easy to see that dq0
dt , dq1dt , dqN−1

dt , dqNdt are strictly positive. Hence the functions
qi are isotone. Finally, the nodes x1 and xN−1 are connected to all other nodes, with
q1 and qN−1 strictly isotone. So by Lemma 2.8, the function H defined by (2.3) is an
M -function on D.

2.3. Time dependent mesh generation. Given a physical solution at time
level t[ν], the updated mesh at time t[ν+1] can be found by solving the nonlinear
system (1.3). We now verify that this system is described by a M -function.

Theorem 2.10. The mapping G : D ⊂ RN+1 → RN+1, for the unknowns

{x[ν+1]
i }Ni=0, defining (1.3) is an M -function on the set D defined in (2.2) if M̃(u, v)

satisfies the conditions (C1) and (C2).
Proof. For ν fixed, the unknowns x[ν+1] satisfy G(x[ν+1]) = 0 where from (1.3)

the ith component of G reads

gi =


θγ(m̂+ m̌)(x

[ν+1]
0 − xL), i = 0

x
[ν+1]
i − θγ(φ

[ν+1]
i+1/2 − φ

[ν+1]
i−1/2)− x[ν]

i − (1− θ)γ(φ
[ν]
i+1/2 − φ

[ν]
i−1/2), i = 1, . . . , N − 1,

θγ(m̂+ m̌)(x
[ν+1]
N − xR), i = N

(2.4)

where we have introduced the notation φ
[ν]
i−1/2 := M̃(x

[ν]
i−1, x

[ν]
i )(x

[ν]
i − x

[ν]
i−1) and γ :=

∆t/(τ∆ξ2).
Computing directly for i = 1, . . . , N − 1 we have

∂gi

∂x
[ν+1]
i−1

= θγ
∂φi−1/2

∂x
[ν+1]
i−1

= θγ(−M̃(x
[ν+1]
i−1 , x

[ν+1]
i ) + M̃u(x

[ν+1]
i−1 , x

[ν+1]
i )(x

[ν+1]
i − x[ν+1]

i−1 )),

∂gi

∂x
[ν+1]
i+1

= −θγ
∂φi+1/2

∂x
[ν+1]
i+1

= −θγ(M̃(x
[ν+1]
i , x

[ν+1]
i+1 ) + M̃v(x

[ν+1]
i , x

[ν+1]
i+1 )(x

[ν+1]
i+1 − x

[ν+1]
i ).

Once again M̃u and M̃v denote the derivatives of M̃(u, v) with respect to its first
and second arguments respectively. Moreoever ∂g0/∂xi = 0 for i = 1, . . . , N and
∂gN/∂xi = 0 for i = 0, . . . , N − 1. Arguing exactly as in the proof of Theorem 2.9 we
can see that G is off-diagonally antitone on the set D defined in (2.2).

We now construct the functions qi(t) specified in Lemma 2.8. and take derivatives
with respect to t. Direct calculation gives dqi/dt = 1 (strictly positive) for i =
2, . . . , N − 2. Also, we have

dq0

dt
= θγ(m̂+ m̌) + θγ(M̃u(x

[ν+1]
0 + t, x

[ν+1]
1 )(x

[ν+1]
1 − x[ν+1]

0 − t)− M̃(x
[ν+1]
0 + t, x

[ν+1]
1 )),

dq1

dt
= 1 + θγ(M̃v(x

[ν+1]
0 , x

[ν+1]
1 + t)(x

[ν+1]
1 + t− x[ν+1]

0 ) + M̃(x
[ν+1]
0 , x

[ν+1]
1 + t)),
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and

dqN−1

dt
= 1− θγ(M̃u(x

[ν+1]
N−1 + t, x

[ν+1]
N )(x

[ν+1]
N − x[ν+1]

N−1 − t)− M̃(x
[ν+1]
N−1 + t, x

[ν+1]
N )),

dqN
dt

= θγ(m̂+ m̌)− θγ(M̃v(x
[ν+1]
N−1 , x

[ν+1]
N )(x

[ν+1]
N + t− x[ν+1]

N−1 ) + M̃(x
[ν+1]
N−1 , x

[ν+1]
N )).

Using condition (C2) and the assumption that the perturbed mesh x[ν+1] + tei

belongs to D it is easy to see that dq0
dt , dq1

dt , dqN−1

dt , dqN
dt are strictly positive. Hence

the functions qi are strictly isotone for all i, so by Lemma 2.8 the function G defined
by 2.4 is a M -function.

It follows from Theorems 2.9 and 2.10 that the steady and time-dependent mesh
generation problems have unique solutions whenever the grid is fine enough. The
existence of solutions, though, must be proved separately. In classical M -function
theory, one proves the existence of solutions to F (x) = 0 as follows [41]: First, one
needs to construct a super- and a subsolution, i.e., vectors x̂ and x̌ such that x̌ ≤ x̂
and F (x̌) ≤ 0 ≤ F (x̂). Next, one shows that the nonlinear Gauss–Seidel and Jacobi
processes, starting with x̂ or x̌, converge monotonically to a fixed point x∗ satisfying
F (x∗) = 0. Thus, the fixed point is a solution of the nonlinear problem and, by
uniqueness, its only solution.

In the next section, we will construct super- and subsolutions to the steady and
time-dependent mesh generation problems for grids that are fine enough. The exis-
tence of solutions then follows from the proof of convergence of a Jacobi or Gauss–
Seidel process. This proof of convergence will be omitted, since it is identical to the
one presented in [41]; however, in Section 4, we will show convergence of the parallel
and alternating Schwarz methods, which are essentially block variants of the Jacobi
and Gauss–Seidel processes.

3. Existence of Solutions. The existence of solutions as well as the conver-
gence of our domain decomposition methods depend on the existence of a superso-
lution and a subsolution of the initial guess x0, both of which must lie within the
domain D of F . In both the steady and time-dependent mesh generation problems,
the functions

hi(ui−1, ui, ui+1) := M̃(ui−1, ui)(ui − ui−1)− M̃(ui, ui+1)(ui+1 − ui),

for i = 1, . . . , N , already defined in (2.3), feature prominently in the nonlinear systems.
To prove the existence of super- and subsolutions, we need to know which values can
be attained by hi when the ui are not allowed to be too far apart. The following
technical lemma provides an answer to this question.

Lemma 3.1. Let N > Bm̂/m̌2, where B, m̂ and m̌ are defined in conditions (C1)
and (C2). If c ∈ R is such that

|uR − uL|
m̂

N
+N |c| < m̌2

B
, (3.1)

then there exists a sequence {ui}Ni=0 such that u0 = uL, uN = uR, and

hi(ui−1, ui, ui+1) = c

for i = 1, 2, . . . , N − 1. Moreover, the ui satisfy

|ui − ui−1| ≤
1

m̌

(
|uR − uL|

m̂

N
+N |c|

)
<
m̌

B
.
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Proof. Let us consider the flux φi−1/2 between grid points i− 1 and i given by

φi−1/2 = M̃(ui−1, ui)(ui − ui−1).

Using this notation, we see that hi(u) = φi+1/2 − φi−1/2, so if we fix a parameter
s ∈ R and require the fluxes φi−1/2 to satisfy

φi−1/2 = φi−1/2(s) = s+ σχi−1/2, (3.2)

where χi−1/2 := 1− 2i−1
N is a decreasing sequence between −1 and 1, then

hi(u(s)) = φi−1/2(s)− φi+1/2(s) = σ(χi−1/2 − χi+1/2) =
2σ

N
.

So if we choose σ = Nc/2, then hi = c for all i. The extra parameter s, despite not
having an influence on the value of hi, is important because it will eventually allow
us to satisfy the boundary conditions u0 = uL, uN = uR. (This is similar in spirit
to shooting methods for solving two-point boundary value problems; here, s plays
the role of the initial velocity, which will be chosen to satisfy the boundary condition
uN = uR.)

Our next task is to show that for any parameter value s satisfying |s| < m̌/B−|σ|,
we can indeed choose the fluxes as specified in (3.2), i.e., the recurrence u0(s) = uL,

M̃(ui−1(s), ui(s))(ui(s)− ui−1(s)) = φi−1/2(s), i = 1, . . . , N (3.3)

is solvable for these values of s and the resulting u is in the set D. To show that this
is possible, consider two points t < t̃, with max{|t− ui−1|, |t̃− ui−1|} < m̌/B. Then

M̃(ui−1, t̃)(t̃− ui−1)− M̃(ui−1, t)(t− ui−1)

= M̃(ui−1, t̃)(t̃− t) + [M̃(ui−1, t̃)− M̃(ui−1, t)](t− ui−1)

≥ m̌(t̃− t)−B(t̃− t)|t− ui−1| > 0.

Thus, the function t 7→ M(ui−1, t)(t − ui−1) is strictly increasing within the interval
{t : |t− ui−1| < m̌/B}, and since

|M(ui−1, t)(t− ui−1)| ≥ m̌|t− ui−1|,

its image contains the interval (−m̌2/B, m̌2/B). Thus, for

|s| < m̌2/B − |σ|,

we have |φi−1/2(s)| < m̌2/B for all i, so (3.3) is uniquely solvable for ui(s).
Finally, we show that the boundary condition uN = uR can be satisfied by choos-

ing the parameter s appropriately. We have

uN (s)− uL =

N∑
i=1

(ui(s)− ui−1(s)) =

N∑
i=1

φi−1/2(s)

M̃(ui−1(s), ui(s))
.

Substituting the relation (3.2) into φi−1/2(s) then gives

uN (s)− uL =

N∑
i=1

s+ σχi−1/2

M̃(ui−1(s), ui(s))
.

11



Let α = (uR − uL)/N . If α ≥ 0, then letting s+ = αm̂+ |σ| leads to

uN (s+) ≥ uL +

N∑
i=1

(uR − uL)m̂/N

M̃(ui−1(s), ui(s))
≥ uL + uR − uL = uR,

and letting s− = αm̌− |σ| leads to

uN (s−) ≤ uL +

N∑
i=1

(uR − uL)m̌/N

M̃(ui−1(s), ui(s))
≤ uL + uR − uL = uR.

If α < 0 (i.e., if uL > uR), then a similar calculation holds by letting s+ = αm̌+ |σ|
and s− = αm̂−|σ|. Since uN is a continuous function of s, there exists s∗ between s−
and s+ such that uN (s∗) = uR, as long as |s±| < m̌2/B − |σ|. A sufficient condition
is

|uR − uL|
m̂

N
+N |c| < m̌2

B
,

since this implies

|s±| ≤ |uR − uL|
m̂

N
+
N |c|

2
<
m̌2

B
− N |c|

2
=
m̌2

B
− |σ|.

Finally, we have

|ui − ui−1| =
|φi−1/2|

M̃(ui−1, ui)
≤ s+ + |σ|

m̌
<
m̌

B
,

so u ∈ D, i.e., the solution stays in the region where h is an M -function.
Lemma 3.1 immediately implies the existence of solutions to the steady-state

problem when the grid is fine enough.
Theorem 3.2. Let N > Bm̂/m̌2. Then there exists a vector x ∈ D that satisfies

the steady-state equidistribution problem H(x) = 0 defined in (1.2).
Proof. Letting c = 0, uL = 0 and uR = 1 in Lemma 3.1 gives the required

solution, with xi = ui for i = 0, 1, . . . , N .
For the time-dependent case, we can reformulate (1.3) as

gi(ui−1, ui, ui+1) = (ui − x[ν]
i )− θγ(φi+1/2(ui, ui+1)− φi−1/2(ui−1, ui))

− (1− θ)γ(φi+1/2(x
[ν]
i , x

[ν]
i+1)− φi−1/2(x

[ν]
i−1, x

[ν]
i )) = 0,

(3.4)

where γ = ∆t/(τ∆ξ2). The above equation is to be solved for ui = x
[ν+1]
i , i =

1, . . . , N − 1.

To guarantee the existence of a solution to this problem, we need to make an
assumption on x[ν], the solution at the previous time step. We assume that there

exists a constant κ (the “curvature”) such that the residuals ri := gi(x
[ν]
i−1, x

[ν]
i , x

[ν]
i+1) =

hi(x
[ν]
i−1, x

[ν]
i , x

[ν]
i+1) satisfy

|ri| ≤ κ/N2. (3.5)
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This is true if, for instance, x
[ν]
i are equidistant samples of a smooth function x[ν](ξ):

in this case, we can write ri = γ(ψ(1)− ψ(0)) = γψ′(η) with η ∈ (0, 1), where

ψ(t) = M̃(tx
[ν]
i−1 + (1− t)x[ν]

i , tx
[ν]
i + (1− t)x[ν]

i+1)[t(x
[ν]
i − x

[ν]
i−1) + (1− t)(x[ν]

i+1 − x
[ν]
i )].

Computing directly we have

ψ′(η) = [M̃u(·)(x[ν]
i−1 − x

[ν]
i ) + M̃v(·)(x[ν]

i − x
[ν]
i+1)][η(x

[ν]
i − x

[ν]
i−1) + (1− η)(x

[ν]
i+1 − x

[ν]
i )]

+M(·)[2x[ν]
i − x

[ν]
i−1 − x

[ν]
i+1].

If |xξ| < Lx and |xξξ| < Kx, then

|ψ′(η)| ≤ 1

N2
(2BL2

x + m̂Kx).

That is, (3.5) holds with

κ = γ(2BL2
x + m̂Kx).

Theorem 3.3. Let N ≥ B(m̂ + κ)/m̌2 where B, m̂, and m̌ are defined in
conditions (C1) and (C2) and κ is defined in (3.5). Then for 1

2 ≤ θ ≤ 1, there exists
a unique solution {ui}Ni=0 to (3.4).

Proof. Assuming (3.5) holds, we can construct a supersolution for the time-
dependent problem. Let c = κ/N2, u0 = 0, uN = 1, and û be the vector constructed
from this value using Lemma 3.1. For this to work, we need

m̌2

B
>
m̂

N
+N |c| = m̂+ κ

N
,

or

N >
B(m̂+ κ)

m̌2
.

Then we have

hi(û) = c =
κ

N2
≥ ri = gi(x

[ν]) = hi(x
[ν]).

Since H is an M -function, this implies ûi ≥ x[ν]
i for all i. Thus, we have

gi(û) ≥ θhi(û) + (1− θ)ri ≥ (1− θ)(κ/N2 − |ri|) ≥ 0,

where we have used the fact that θ ≥ 1−θ, since θ ∈ [ 1
2 , 1]. Thus, û is a supersolution.

Similarly, we can choose c = −κ/N2 to construct a subsolution ǔ, with the same
condition on N as above. Now, using û or ǔ as the initial guess, one can show
[41, §13.5] that the nonlinear Jacobi/Gauss–Seidel process converges to a vector u
satisfying G(u) = 0, so the solution exists (and is unique by Theorem 2.6).

Remark. Since gi(x
[ν]) = hi(x

[ν]) = ri, we in fact have

gi(û) ≥ θhi(û) + (1− θ)ri ≥ θhi(x[ν]) + (1− θ)ri = ri,

which implies gi(û) ≥ gi(x[ν]). Similarly, we have gi(ǔ) ≤ gi(x[ν]). These inequalities
will be used in the next section to show that the alternating and parallel Schwarz
methods converge when x[ν] is used as an initial guess.
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ξξa1 = 0 ξbJ = 1ξa2 ξb1 ξa3 ξb2 ξaj ξbj−1
ξaj+1

ξbj

Ωj

· · ·

Ω1

Ω2

Fig. 4.1. Decomposition into many subdomains.

4. Convergence of Domain Decomposition Methods. In this section, we
consider domain decomposition algorithms for solving the equidistribution problems
(1.2) and (1.3). Each system may be written as F (x) = 0, where F : D ⊂ RN+1 →
RN+1 is given by F = (f0, . . . , fN )T , where fi = hi from (2.3) in the steady case and
fi = gi from (2.4) in the time dependent case. We have seen in Theorems 2.9 and
2.10 that in each case F is an M -function whenever the distance between successive
points is not too large.

We now decompose the set of nodes {0, . . . , N} into J overlapping subdomains
as shown in Figure 4.1, i.e., we have Ωj = {i : aj < i < bj}, with ξa1 = 0, ξbJ = 1 and

aj < bj−1 < aj+1 < bj for 2 ≤ j ≤ J − 1.

The subdomain problem associated with Ωj is now defined as follows: we solve
Fj(x

j ;xaj , xbj ) = 0 for xj , where

Fj = (faj+1, . . . , fbj−1)T , xj = (xaj+1, . . . , x
T
bj−1), (4.1)

and the boundary values at aj and bj are given by xaj and xbj . Note that since Fj is a
restriction of F , the functions Fj( · ;xaj , xbj ) : Rbj−aj−1 → Rbj−aj−1 are M -functions.
Moreover, the subdomain functions Fj inherit the antitonicity property with respect
to the boundary values, i.e., we have

Fj(x
j ;α, β) ≥ Fj(xj ;α′, β′) (4.2)

whenever α ≤ α′ and β ≤ β′.
We can now define the classical alternating Schwarz (or Gauss–Seidel) algorithm:

for k = 0, 1, 2, . . . and for j = 1, . . . , J solve

Fj(x
j,k+1;xj−1,k+1

aj , xj+1,k
bj

) = 0 for xj,k+1. (4.3)

Similarly, we can define the classical parallel Schwarz (or Jacobi) algorithm: for
k = 0, 1, 2, . . . and for j = 1, . . . , J , solve

Fj(x
j,k+1;xj−1,k

aj , xj+1,k
bj

) = 0 for xj,k+1. (4.4)

Under the assumption of the existence of an appropriate subsolution and super-
solution, the goal of this section is to prove that both iterations converge to the same
unique global solution of (4.1). Thus, these DD iterations can be used in place of
Newton’s method, especially when the latter has trouble converging.

4.1. Convergence of the Alternating Schwarz iteration. We first prove
the convergence of the alternating Schwarz iteration. We will show this by adapting
the technique of [44] to handle the subdomain solves.

Theorem 4.1. Let N be large enough so that the global problem possesses a
unique solution x∗ ∈ D ⊂ RN+1. Let x0 ∈ D ⊂ RN+1 be a supersolution, i.e.,
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F (x0) ≥ 0 = F (x∗). Then the subdomain iterates xj,k obtained from the classical
alternating Schwarz method (4.3) with initial guess xj,0 = x0

∣∣
Ωj

are well defined and

satisfy

xj,k ≥ xj,k+1 ≥ x∗|Ωj

for all k ≥ 0 and xj,k → x∗|Ωj
as k → ∞; that is we have convergence from above.

Similarly, if x0 is a subsolution, then xj,k ↑ x∗|Ωj
as k →∞; that is we have conver-

gence from below.
Proof. We only prove the supersolution case here, the subsolution case being

similar. For any 1 ≤ j ≤ J and k ≥ 0, we define the fractional iterate xk+j/J ∈ RN+1

as

x
k+j/J
i =


x`,k+1
i , a` ≤ i < a`+1, ` < j,

xj,k+1
i , aj ≤ i < bj ,

x`,ki , max{bj , a`} ≤ i < a`+1, ` > j.

(4.5)

In other words, each successive fractional iterate is obtained by replacing, after each
subdomain solve, the portion of the global iterate corresponding to Ωj by xj,k+1.
We note that xk+j/J is well defined, i.e., the subdomain problem (4.3) has a unique
solution on Ωj , whenever xk+(j−1)/J is a supersolution in D, since Fj is an M -function
on D and the restriction of xk+(j−1)/J onto Ωj is a supersolution with respect to Fj .

Moreover, the solution of the subdomain problem satisfies |xj,k+1
i − xj,ki−1| < m̌/B, so

that xk+j/J ∈ D.
Thus, it suffices to show inductively for all 1 ≤ j ≤ J and k ≥ 0 that F (xk+j/J) ≥

0 and

xk+(j−1)/J ≥ xk+j/J ≥ x∗;

the conclusion then follows by restricting xk+j/J to Ωj . The assumption that x0 is
a supersolution means that the base case k = 0 and j = 0 is verified, so assume
inductively that F (xk+(j−1)/J) ≥ 0 for some 1 ≤ j ≤ J and k ≥ 0. By the induction
hypothesis, we have

Fj(xk+(j−1)/J
∣∣∣
Ωj

;xk+1
aj , xkbj ) ≥ 0,

whereas by construction, we have

Fj(xk+j/J
∣∣∣
Ωj

;xk+1
aj , xkbj ) = 0.

Since Fj( ·xk+1
aj , xkbj ) is anM -function, it is inverse isotone, which implies xk+(j−1)/J

∣∣
Ωj
≥

xk+j/J
∣∣
Ωj
. But xk+(j−1)/J and xk+j/J are identical everywhere outside Ωj ; so xk+(j−1)/J ≥

xk+j/J . Moreover, we have

fi(x
k+j/J) =

{
fi(x

k+(j−1)/J) ≥ 0 for i < aj and for i > bj ,

0 for aj < i < bj ,

so it remains to show that fi(x
k+j/J) ≥ 0 for i ∈ {aj , bj}. But since x

k+(j−1)/J
i =

x
k+j/J
i for i ∈ {aj , bj} and xk+(j−1)/J ≥ xk+j/J , the off-diagonal antitonicity of F

implies

0 ≤ fi(xk+(j−1)/J) ≤ fi(xk+j/J), i ∈ {aj , bj}.
15



So F (xk+j/J) ≥ 0, as required. Thus, we have shown by induction {xk+j/J}j,k is a
decreasing sequence bounded below by x∗, so it converges to some global solution x̃∗.

But for any node 0 ≤ i ≤ N + 1, there is always a subsequence {r(i)
m }m≥0 for which

fi(x
r(i)m ) = 0 for all m ≥ 0, so the continuity of F implies F (x̃∗) = 0. Since F is an

M -function, this implies x̃∗ = x∗, so the xj,k all converge to x∗|Ωj
.

As we will show in Section 6, the supersolution constructed from Lemma 3.1 is
generally very far from the solution to the global problem and should not be used as
the initial guess in an actual computation. A much better choice would be to use the
uniform initial guess x0 = (0, 1/N, . . . , (N − 1)/N, 1)T . We show that the alternating
Schwarz method also converges to the exact solution with this initial guess.

For the steady-state problem, we would like to find a supersolution as well as a
subsolution for the uniform initial guess. There, the residual function is simply hi, so
by putting c = 2B/N2, Lemma 3.1 gives a u that satisfies hi(u) ≥ hi(x

0), provided
(3.1) holds, i.e.

m̂

N
+

2B

N
<
m̌2

B
=⇒ N >

B(m̂+ 2B)

m̌2
. (4.6)

In other words, u is a supersolution. Similarly, putting c = −2B/N2 gives a sub-
solution, provided the same condition on N holds. We now arrive at our first main
result.

Theorem 4.2. Let N > B(m̂+2B)
m̌2 with B, m̂ and m̌ defined in (C1) and (C2).

Suppose that for the uniform guess x0 = (1/N, . . . , (N − 1)/N)T , there are enough
points in each subdomain Ωj, j = 1, . . . , N , so that the alternating Schwarz method
(4.3) applied to the nonlinear system H in (2.3) produces well-defined subdomain
iterates xj,k for all j and k. Then the subdomain iterates converge to x∗|Ωj

, the
restriction of the exact solution onto Ωj.

Proof. First, N is necessarily larger than the Bm̂/m̌2 required for the existence
of a solution by Theorem 3.2. In addition, the initial guess x0 belongs to the set D,
since

xi − xi−1 =
1

N
<

m̌2

B(m̂+ 2B)
≤ m̌

B
.

Moreover, the initial residual satisfies

|hi(x0)| =
∣∣∣∣M̃ (

i− 1

N
,
i

N

)
· 1

N
− M̃

(
i

N
,
i+ 1

N

)
· 1

N

∣∣∣∣ ≤ 2B

N2
.

As a result, by letting c = ±2B/N2, we get

m̂

N
+N |c| = m̂+ 2B

N
<
m̌2

B
,

so the hypotheses of Lemma 3.1 are satisfied. We thus conclude that there exist
subsolutions and supersolutions x̌0, x̂0 ∈ D such that

H(x̌0) ≤ H(x0) ≤ H(x̂0),

which implies

x̌0 ≤ x0 ≤ x̂0. (4.7)
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We now prove inductively that for the alternating Schwarz (Gauss–Seidel) process,
we have x̌j,k ≤ xj,k ≤ x̂j,k for j = 1, . . . , J and for k ≥ 1; this implies xj,k → x∗|Ωj

,
since both x̌j,k and x̂j,k converge to x∗|Ωj

by Theorem 4.1.

As an induction hypothesis, assume that there exists some k ≥ 0 and ` ≥ 1 such
that

x̌j,k ≤ xj,k ≤ x̂j,k 1 ≤ j ≤ J, (4.8)

x̌j,k+1 ≤ xj,k+1 ≤ x̂j,k+1 1 ≤ j ≤ `− 1, (4.9)

where for ` = 1 the set in (4.9) is empty. Clearly, (4.8) and (4.9) hold for k = 0 and
` = 1. We prove (4.9) for `+ 1 as follows: by (4.3), we know that

H`(x̌
`,k+1; x̌`−1,k+1

a`
, x̌`+1,k
b`

) = 0,

H`(x
`,k+1;x`−1,k+1

a`
, x`+1,k
b`

) = 0,

H`(x̂
`,k+1; x̂`−1,k+1

a`
, x̂`+1,k
b`

) = 0,

where, using the notation established in Section 4, H` refers to the `-th subdomain
problem for H. For convenience we write the boundary conditions as

x̌0,k+1
a1 = x0,k+1

a1 = x̂0,k+1
a1 = 0,

x̌J+1,k
bJ

= xJ+1,k
bJ

= x̂J+1,k
bJ

= 1.

Now by (4.2), we have

0 = H`(x
`,k+1;x`−1,k+1

a`
, x`+1,k
b`

) = H`(x̂
`,k+1; x̂`−1,k+1

a`
, x̂`+1,k
b`

) ≤ H`(x̂
`,k+1;x`−1,k+1

a`
, x`+1,k
b`

).

Since H` is inverse isotone when the boundary conditions are fixed, this implies
x`,k+1 ≤ x̂`,k+1, and the same argument holds for the subsolution. Thus, (4.9) is
verified for `+ 1. This completes the proof of (4.9), and hence of (4.8), which in turn
shows convergence of xj,k to the solution x∗|Ωj

.

Remarks.

1. Suppose each subdomain has at least B(m̂+ 2B)/m̌2 nodes, so that the first
iteration of the alternating Schwarz method is defined. Then all subsequent
iterates are guaranteed to be defined: since each subdomain solution is nec-
essarily monotonic by the local equidistribution principle, see Lemma B.1,
we have 0 ≤ ui ≤ 1 for all i. Thus, all interface values are between 0 and 1
at the next iteration, so the same number of mesh points suffices. In actual
computations, however, one generally needs fewer grid points, see Section 6.

2. If a non-uniform initial guess is used, a result analogous to Theorem 4.2 also
holds, except we need to replace 2B/N2 by maxi |hi(x0)|, and modify the
number of grid points in (4.6) accordingly.

3. Remark 2 is important within the MP iteration procedure which alternately
solves the physical and mesh DEs. The previous approximate mesh can be
used as a good initial guess for the DD solution of next mesh DE solve. This
generally reduces the number of DD iterations as the MP iteration proceeds.
We provide an example of this in Section 6.
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4.2. Convergence of the Parallel Schwarz iteration. Under the same hy-
pothesis as in Theorem 4.1, we can show that the parallel Schwarz method also con-
verges to the exact solution.

Theorem 4.3. Let N be large enough so that a unique solution x∗ ∈ D ⊂ RN+1

of the global problem exists. Let x0 ∈ D ⊂ RN+1 be a supersolution, i.e., F (x0) ≥ 0 =
F (x∗). Then the subdomain iterates xj,k obtained from the classical parallel Schwarz
method (4.4) with initial guess xj,0 = x0

∣∣
Ωj

are well defined and satisfy

xj,k ≥ xj,k+1 ≥ x∗|Ωj

for all k ≥ 0 and xj,k → x∗|Ωj
as k → ∞; that is, we have convergence from above.

Similarly, if x0 is a subsolution, then xj,k ↑ x∗|Ωj
as k → ∞; that is, we have

convergence from below.
Proof. The arguments for the supersolution case are similar to the proof of The-

orem 4.1, but instead of defining the fractional iterates, we define xk+1 by

xk+1
i =

{
xj,k+1
i , if bj−1 ≤ i ≤ aj+1,

min{xj−1,k+1
i , xj,k+1

i }, if aj < i < bj−1.

In other words, for points inside the overlap, we choose the smaller of the two solutions.
We now show by induction that F (xk) ≥ 0 and x∗ ≤ xk+1 ≤ xk for all k ≥ 0. The
base case for F (xk) ≥ 0 is true for k = 0. Then we have

Fj(xk
∣∣
Ωj

;xkaj , x
k
bj ) ≥ 0

for all j. For each index i, let Ωj be the subdomain for which xk+1
i = xj,k+1

i . (The
choice of j is unambiguous when i is outside the overlap, but when i is inside the
overlap, we pick the j that yields the smaller value for xj,k+1

i .) Then by construction,
we have

fi(x
j,k+1) = 0 ≤ fi(xk).

By the inverse isotonicity of Fj , this implies xj,k+1 ≤ xk|Ωj . Now xk+1
∣∣
Ωj
≤ xj,k+1,

since xk+1 is defined as a pointwise minimum. By off-diagonal antitonicity of fi, we
see that

0 = fi(x
j,k+1) ≤ fi(xk+1).

Since this is true for all i, we conclude that F (xk+1) ≥ 0, as well as

x∗ ≤ xk+1 ≤ xk.

The argument for the subsolution is similar, except we should take the larger of the
two subdomain values inside the overlap.

It is clear that for the steady-state problem, we can use the same super- and
subsolution as in Theorem 4.2 to show that the parallel Schwarz method converges
for the uniform guess x0 = (1/N, . . . , (N − 1)/N)T . We now state a similar result for
the time-dependent problem, which is the second main result of our paper.

Theorem 4.4. Let N > B(m̂ + κ)/m̌2, where B, m̂, and m̌ are defined in
conditions (C1) and (C2) and κ is defined in (3.5). Suppose each subdomain Ωj
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contains enough grid points so that the parallel and alternating Schwarz methods (4.4)
and (4.3) applied to the nonlinear system G in (2.4) produce well-defined subdomain
iterates. Then for the initial guess x[ν], both algorithms converge to the solution x[ν+1]

of the time-dependent mesh generation problem (3.4).

Proof. The condition on N is the same as in Theorem 3.3, so a unique solution to
the global problem exists. Consider once again the supersolution û and subsolution ǔ
constructed in the proof of Theorem 3.3. As shown in the remark immediately after
Theorem 3.3, û and ǔ satisfy

gi(ǔ) ≤ gi(x[ν]) ≤ gi(û).

Thus, by the M -function property of G, we have

ǔ ≤ x[ν] ≤ û.

We can now mimic the proof of Theorem 4.2 to show that the parallel and alternating
Schwarz methods (4.3) and (4.4) both converge to the unique solution x∗ for the
initial guess x[ν].

Remark. Suppose the x
[ν]
i are all between 0 and 1, and assume that 2(1− θ)γm̂ ≤ 1.

(This is always true for θ = 1, i.e., Backward Euler, for instance.) Then the discrete
maximum principle (Lemma B.2) holds; as a result, if each subdomain has at least
B(m̂ + κ)/m̌2 nodes, then every iteration of the alternating and parallel Schwarz
methods is well defined, for the same reason as in the steady case.

5. Asymptotic convergence rate of the Schwarz iterations. In this sec-
tion, we analyze the asymptotic convergence rate of the discrete parallel Schwarz
method of Section 4 as k → ∞, i.e., when xk is close to the solution x∗. We only
show the analysis for the stationary equidistribution problem

φi−1/2(xi−1, xi)− φi+1/2(xi, xi+1/2) = 0, i = 1, . . . , N − 1;

similar techniques can be used to analyze the time-dependent problem. Our first main
result is the following:

Theorem 5.1. Suppose the conditions (C1)–(C3) hold. Then the parallel Schwarz
method (4.4) for solving the stationary equidistribution problem (2.3) converges with
the asymptotic convergence factor ρ(Z), where ρ(Z) denotes the spectral radius of the
(2J − 2)× (2J − 2) matrix

Z =



0 Q1

P2 0 0 R2

S2 0 0 Q2

P3 0 0 R3

S3 0 0 Q3

P4 0 0 R4

. . .
. . .

. . .

SJ−1 0 0 QJ−1

PJ 0


. (5.1)
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Moreover, the coefficients Pj, Qj, Rj and Sj satisfy the bounds

µaj+1−aj · µ
−(bj−aj+1) − 1

µ−(bj−aj) − 1
≤ Sj ≤ µ−(aj+1−aj) · 1− µbj−aj+1

1− µbj−aj
,

µbj−aj+1 · µ
−(aj+1−aj) − 1

µ−(bj−aj) − 1
≤ Qj ≤ µ−(bj−aj+1) · 1− µaj+1−aj

1− µbj−aj
,

µbj−1−aj · µ
−(bj−bj−1) − 1

µ−(bj−aj) − 1
≤ Pj ≤ µ−(bj−1−aj) · 1− µbj−bj−1

1− µbj−aj
,

µbj−bj−1 · µ
−(bj−1−aj) − 1

µ−(bj−aj) − 1
≤ Rj ≤ µ−(bj−bj−1) · 1− µbj−1−aj

1− µbj−aj
,

whenever µ ∈ (0, 1] is a constant such that for all i = 1, . . . , N − 1, we have

µ

∣∣∣∣∂φi−1/2

∂xi

∣∣∣∣ ≤ ∣∣∣∣∂φi+1/2

∂xi

∣∣∣∣ ≤ 1

µ

∣∣∣∣∂φi−1/2

∂xi

∣∣∣∣ . (5.2)

This result is analogous to the result in [22] for the continuous case: there, it is
shown that for the continuous equidistribution problem, the error on the jth subdo-
main with respect to the error measure

Ekj (ξ) =

∫ xk
j (ξ)

xj(ξ)

M(x̃) dx̃

satisfies

Ek+1
j (ξ) =

1

ξbj − ξaj

[
(ξ − ξaj )Ekj+1(ξbj ) + (ξbj − ξ)Ekj−1(ξaj )

]
. (5.3)

If we now define the vector Ek containing the errors at all interface points (ordered
from left to right according to their location in the domain, see Fig. 4.1)

Ek = (Ek1 (ξa2), Ek2 (ξb1), Ek2 (ξa3), Ek3 (ξb2), . . . , EkJ−1(ξaJ ), EkJ(ξbJ−1
))T ,

then we can use (5.3) to obtain Ek+1 = Z̃Ek, where

Z̃ =



0 q1

p2 0 0 r2

s2 0 0 q2

p3 0 0 r3

s3 0 0 q3

p4 0 0 r4

. . .
. . .

. . .

sJ−1 0 0 qJ−1

pJ 0


, (5.4)

with

pj =
ξbj − ξbj−1

ξbj − ξaj
, qj =

ξaj+1
− ξaj

ξbj − ξaj
, rj =

ξbj−1
− ξaj

ξbj − ξaj
, sj =

ξbj − ξaj+1

ξbj − ξaj
.
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Our second main result of this section shows that as the grid is refined, the discrete
iteration matrix converges to the continuous one above, subject to some smoothness
assumptions on M̃ :

Theorem 5.2. Let N be the number of degrees of freedom in the equidistribution
problem. Suppose the conditions (C1)–(C3) hold, and assume in addition that the

partial derivatives ∂M̃
∂u and ∂M̃

∂v are both Lipschitz continuous. Then the coefficients
Pj, Qj, Rj and Sj in Theorem 5.1 satisfy

Pj →
ξbj − ξbj−1

ξbj − ξaj
, Qj →

ξaj+1 − ξaj
ξbj − ξaj

, Rj →
ξbj−1 − ξaj
ξbj − ξaj

, Sj →
ξbj − ξaj+1

ξbj − ξaj
,

as N →∞.
The next two subsections contain the proofs of these two theorems.

5.1. Proof of Theorem 5.1. First, let us write the parallel Schwarz method
(4.4) in fixed point form in terms of the interface values. Suppose we arrange the
interface values in the same order as in the continuous setting:

Xk
Γ = (x1,k

a2 , x
2,k
b1
, x2,k
a3 , x

3,k
b2
, . . . , xJ−1,k

aJ , xJ,kbJ−1
)T .

Next, let Φ denote the fixed point mapping corresponding to the parallel Schwarz
iteration, i.e., we have Xk+1

Γ = Φ(Xk
Γ). Then it is well known that the asymptotic

convergence rate of the iteration is given by the spectral radius of the Jacobian ∂Φ
∂X .

Our first step is to determine the sparsity pattern of this Jacobian matrix.
Lemma 5.3. The Jacobian ∂Φ

∂X has the same sparsity pattern as the matrix Z in
(5.1).

Proof. If Y = Φ(X) with Y = (ya2 , yb1 , . . . , yaJ , ybJ−1
)T , then for all subdomains

j = {1, . . . , J}, the values yaj and ybj are defined implicitly by

yaj = (yj−1)aj , where Hj−1(yj−1;xaj−1
, xbj−1

) = 0,

ybj = (yj+1)bj , where Hj+1(yj+1;xaj+1
, xbj+1

) = 0,

where the Hj are the subdomain objective functions, as defined in (4.1). Thus, yaj
only depends on the values of xaj−1

and xbj−1
, whereas ybj only depends on xaj+1

,
and xbj+1

, so their derivatives with respect to the remaining variables are identically
zero. This yields a Jacobian with the sparsity pattern shown in (5.1).

Our next step is to compute the individual coefficients of the Jacobian. Recall
that the global problem is defined by H(y) = 0, where the components hi of H read

hi(yi−1, yi, yi+1) = φi−1/2(yi−1, yi)− φi+1/2(yi, yi+1), aj−1 < i < bj−1.

In order to match the results in the continuous case, we will consider a diagonally
scaled version of the Jacobian, i.e., we let Z = D ∂Φ

∂XD
−1, where

D = diag

(
∂φa2+1/2

∂ya2
,
∂φb1+1/2

∂yb1
, . . . ,

∂φaJ+1/2

∂yaJ
,
∂φbJ−1+1/2

∂ybJ−1

)
.

Comparing with the definition of Z in (5.1), we see that

Pj =

(
∂φaj+1/2

∂yaj

)−1 ∂ybj−1

∂xaj

∂φbj−1+1/2

∂ybj−1

, Rj =

(
∂φbj+1/2

∂ybj

)−1 ∂ybj−1

∂xbj

∂φbj−1+1/2

∂ybj−1

,

Sj =

(
∂φaj+1/2

∂yaj

)−1 ∂yaj+1

∂xaj

∂φaj+1+1/2

∂yaj+1

, Qj =

(
∂φbj+1/2

∂ybj

)−1 ∂yaj+1

∂xbj

∂φaj+1+1/2

∂yaj+1

,

(5.5)
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where all derivatives are to be evaluated at the solution X∗.
Using implicit differentiation, we obtain

∂Hj

∂yj
∂yj

∂xaj
+
∂Hj

∂xaj
= 0 =⇒ ∂yj

∂xaj
= −

(
∂Hj

∂yj

)−1
∂Hj

∂xaj
.

Thus,
∂yaj+1

∂xaj
is simply the component of

∂yj

∂xaj
corresponding to the location aj+1,

and the other derivatives can be calculated similarly. The matrix Kj :=
∂Hj

∂yj
has a

special structure: it is a tridiagonal matrix of the form

Kj =


c1 + d1 −c2
−d1 c2 + d2 −c3

. . .
. . .

. . .

−dNj−2 cNj−1 + dNj−1 −cNj

−dNj−1 cNj
+ dNj

 , (5.6)

where Nj = bj − aj − 1 is the number of interior unknowns in subdomain j and

ci =
∂φaj+i−1/2

∂yaj+i
, di = −

∂φaj+i+1/2

∂yaj+i
.

Next, we notice that the vector
∂Hj

∂xaj
has exactly one non-zero component at the

first position. This is because the only component that depends on xaj corresponds
to index aj + 1, i.e., the first unknown in the nonlinear system. Its value can be
calculated explicitly:

∂haj+1

∂xaj
=
∂φaj+1/2

∂xaj
= −d0.

Thus, we see that the derivatives we want to compute are multiples of (eq)TK−1
j ep,

where eq is the q-th standard basis vector (1 at position q and 0 elsewhere), q is the
position of index aj+1 in subdomain j, and p ∈ {1, Nj} depending on whether we are
taking the derivative with respect to xaj or xbj . In other words, we need to estimate
individual entries of the inverse of a tridiagonal matrix. Estimates of this type exist
in the literature, see e.g. [40] and [43]; unfortunately, those estimates are not precise
enough for our purposes. In particular, to prove Theorem 5.2, we need the upper and
lower bounds in 5.1 to converge to the same value as µ → 1. As a result, we will
derive our own estimates with the help of the next lemma.

Lemma 5.4. Let Kj be defined in (5.6). Then for q ∈ {1, . . . , Nj}, we have

(eq)TK−1
j e1 =

µ1 · · ·µq−1

Cq

(
cq
Cq

+
dq
Dq

) , (eq)TK−1
j eNj =

µ−1
q+1 · · ·µ

−1
Nj

Dq

(
cq
Cq

+
dq
Dq

) ,
where µi = di/ci and

Cq = 1 + µq−1 + µq−1µq−2 + . . .+ µq−1 · · ·µ1,

Dq = 1 + µ−1
q+1 + µ−1

q+1µ
−1
q+2 + . . .+ µ−1

q+1 · · ·µ
−1
Nj
.
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Proof. Let w = K−Tj eq = (w1, . . . , wNj
)T , so that for all p,

(eq)TK−1
j ep = wTep = wp.

Then we have Kjw = eq, which in component form reads

ci(wi − wi−1)− di(wi+1 − wi) =

{
1, i = q

0, else,
(5.7)

where for convenience we have defined w0 = wP+1 = 0. This implies

wi − wi−1 =
di
ci

(wi+1 − wi) for i 6= q,

which allows us to unroll the recurrence to obtain

wq = wq − w0 = (wq − wq−1) + (wq−1 − wq−2) + · · ·+ (w1 − w0)

= (wq − wq−1)

[
1 +

dq−1

cq−1
+
dq−1dq−2

cq−1cq−1
+ · · ·+ dq−1 · · · d1

cq−1 · · · c1

]
=: Cq(wq − wq−1).

Unrolling the recurrence in the other direction gives another expression for wq:

wq = wq − wP+1 = (wq − wq+1) + (wq+1 − wq+2) + · · ·+ (wNj
− wNj+1)

= (wq − wq+1)

[
1 +

cq+1

dq+1
+
cq+1cq+2

dq+1dq+2
+ · · ·+

cq+1 · · · cNj

dq+1 · · · dNj

]
=: Dq(wq − wq+1).

Now substituting the two expressions above into the q-th equation of (5.7) gives(
cq
Cq

+
dq
Dq

)
wq = 1.

Thus, we get

wNj = wNj − wNj+1 =
cq+1 · · · cNj

dq+1 · · · dNj

(wq − wq+1)

=
cq+1 · · · cNj

dq+1 · · · dNj

wq
Dq

=
cq+1 · · · cNj

dq+1 · · · dNj

1

Dq

(
cq
Cq

+
dq
Dq

) .
Similarly, we have

w1 = w1 − w0 =
dq−1 · · · d1

cq−1 · · · c1
· 1

Cq

(
cq
Cq

+
dq
Dq

) .
The above lemma can be generalized to obtain expressions for the other compo-

nents of w, but we will omit this since it is not required for our analysis.

Example. For the case ci = di = 1 for all i (i.e., the 1D Laplacian), we obtain
Cq = q, Dq = Nj − q + 1, so

w1 =
Nj − q + 1

Nj + 1
, wNj

=
q

Nj + 1
.
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In particular, we have w1 + wNj
= 1.

We are now ready to prove Theorem 5.1.
Proof. (Theorem 5.1) For any invertible diagonal matrix D, the matrices ∂Φ

∂X and

D ∂Φ
∂XD

−1 have the same sparsity pattern, so by Lemma 5.3, it suffices to show that
the coefficients Pj , Qj , Rj and Sj satisfy the stated bounds. We prove the bounds in
detail for Sj only, the others being similar.

Let µ ∈ (0, 1] be a constant satisfying (5.2), so that µ ≤ di/ci ≤ µ−1 for all i.
Then for q fixed, the expressions in the statement of Lemma 5.4 imply that

1− µq

1− µ
≤ Cq ≤

µ−q − 1

µ−1 − 1
,

1− µNj−q+1

1− µ
≤ Dq ≤

µ−(Nj−q+1) − 1

µ−1 − 1
.

The denominator of w1 = (eq)TK−1
j e1 then satisfies

Cq

(
cq
Cq

+
dq
Dq

)
= cq

(
1 +

dq
cq
· Cq
Dq

)
≤ cq

(
1 + µ−1 · µ

−q − 1

µ−1 − 1
· 1− µ

1− µNj−q+1

)
= cq

µ−(Nj+1) − 1

µ−(Nj−q+1) − 1
.

On the other hand, we also have

Cq

(
cq
Cq

+
dq
Dq

)
≥ cq

(
1 + µ · 1− µq

1− µ
· µ−1 − 1

µ−(Nj−q+1) − 1

)
= cq

1− µNj+1

1− µNj−q+1
.

This implies

d1 · · · dq−1

c1 · · · cq
· µ
−(Nj−q+1) − 1

µ−(Nj+1) − 1
≤ w1 ≤

d1 · · · dq−1

c1 · · · cq
· 1− µNj−q+1

1− µNj+1
.

Now let q be the local index of aj+1 within the jth subdomain, i.e., q = aj+1 − aj .
Then by definition, we have

∂yaj+1

∂xaj
= d0w1.

But
∂φaj+1/2

∂yaj
= −d0 and

∂φaj+1+1/2

∂yaj+1

= −dq, so in fact

Sj =
dq
d0
· d0w1 = dqw1,

from which it follows that

d1 · · · dq
c1 · · · cq

· µ
−(Nj−q+1) − 1

µ−(Nj+1) − 1
≤ Sj ≤

d1 · · · dq
c1 · · · cq

· 1− µNj−q+1

1− µNj+1
.

The bound on the ratios di/ci then yields

µq · µ
−(Nj−q+1) − 1

µ−(Nj+1) − 1
≤ Sj ≤ µ−q ·

1− µNj−q+1

1− µNj+1
.

Substituting Nj = bj − aj − 1 and q = aj+1 − aj yields the required bounds on Sj .
The bounds on Pj , Qj and Rj are obtained similarly.
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5.2. Proof of Theorem 5.2. The bounds in Theorem 5.1 depend on the value
of µ that can be used. To understand the behavior of the algorithm as the number of
grid points increases, we need the following lemma.

Lemma 5.5. Let Kj be defined in (5.6) and N be the number of degrees of freedom
in the equidistribution problem. Suppose the conditions (C1)–(C3) hold, and assume

in addition that the partial derivatives ∂M̃
∂u and ∂M̃

∂v are both Lipschitz continuous.
Then for N large enough, there exists a constant ω > 0 independent of N such that
if we let

µ = 1− ω

N2
,

then we have µ ≤ di/ci ≤ µ−1 for all i.
Proof. Let (yi)

N
i=0 be the solution of the equidistribution problem. From the

condition (C3), we see that
∑N
i=1 M̃(yi−1, yi)(yi − yi−1) is simply a Riemann sum

for the integral
∫ 1

0
M(y) dy, so it converges to the integral as N → ∞. Thus, the

Riemann sum is bounded for all N by a constant, say ω1 > 0. However, from the
relation

M̃(y0, y1)(y1 − y0) = M̃(y1, y2)(y2 − y1) = · · · = M̃(yN−1, yN )(yN − yN−1),

we see that for all i, we have

M̃(yi−1, yi)(yi − yi−1) =
1

N

N∑
i=1

M̃(yi−1, yi)(yi − yi−1) ≤ ω1

N
.

This implies

0 < yi − yi−1 <
ω1

m̌N
, i = 1, . . . , N.

Next, we have by definition

di = −
∂φi+1/2

∂yi
=

∂

∂yi

(
M̃(yi, yi+1)(yi − yi+1)

)
= M̃(yi, yi+1) +

∂M̃

∂u

∣∣∣∣∣
(yi,yi+1)

(yi − yi+1)

ci =
∂φi−1/2

∂yi
=

∂

∂yi

(
M̃(yi−1, yi)(yi − yi−1)

)
= M̃(yi−1, yi) +

∂M̃

∂v

∣∣∣∣∣
(yi−1,yi)

(yi − yi−1)

which means

ci ≥ m̌−B
ω1

m̌N
≥ m̌

2
> 0

for N large enough, and the exact same bound holds for di. Moreover, we have

di − ci = M̃(yi, yi+1)− M̃(yi−1, yi)︸ ︷︷ ︸
(∗)

+
∂M̃

∂u

∣∣∣∣∣
(yi,yi+1)

(yi − yi+1)− ∂M̃

∂v

∣∣∣∣∣
(yi−1,yi)

(yi − yi−1).

The term in (∗) can be written as

M̃(yi, yi+1)− M̃(yi−1, yi) = M̃(yi, yi+1)− M̃(yi, yi) + M̃(yi, yi)− M̃(yi−1, yi)

=
∂M̃

∂v

∣∣∣∣∣
(yi,ζ+)

(yi+1 − yi) +
∂M̃

∂u

∣∣∣∣∣
(ζ−,yi)

(yi − yi−1),
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where yi−1 < ζ− < yi and yi < ζ+ < yi+1. This implies

|di − ci| ≤

∣∣∣∣∣
(
∂M̃

∂v

∣∣∣∣∣
(yi,ζ+)

(yi+1 − yi)−
∂M̃

∂v

∣∣∣∣∣
(yi−1,yi)

(yi − yi−1)

)∣∣∣∣∣
+

∣∣∣∣∣
(
∂M̃

∂u

∣∣∣∣∣
(ζ−,yi)

(yi − yi−1)− ∂M̃

∂u

∣∣∣∣∣
(yi,yi+1)

(yi+1 − yi)
)∣∣∣∣∣

≤ ω1

N

∣∣∣∣∣
(

1

M̃(yi, yi+1)

∂M̃

∂v

∣∣∣∣∣
(yi,ζ+)

− 1

M̃(yi−1, yi)

∂M̃

∂v

∣∣∣∣∣
(yi−1,yi)

)∣∣∣∣∣
+
ω1

N

∣∣∣∣∣
(

1

M̃(yi−1, yi)

∂M̃

∂u

∣∣∣∣∣
(ζ−,yi)

− 1

M̃(yi, yi+1)

∂M̃

∂u

∣∣∣∣∣
(yi,yi+1)

)∣∣∣∣∣
Thus, within each absolute value term, we have a difference of bounded Lipschitz
functions evaluated at points that are at most ω1/(m̌N) apart, which means there
exists a constant ω2 such that

|di − ci| ≤ ω2/N
2.

This implies

di
ci

= 1 +
di − ci
ci

≥ 1− ω2

N2
· 2

m̌

for N large enough. Hence, putting ω = 2ω2/m̌ and µ = 1−ω/N2 leads to di/ci ≥ µ.
Similarly, we have

ci
di

= 1 +
ci − di
di

≥ 1− ω2

N2
· 2

m̌
= µ,

so we have ci/di ≥ µ, or equivalently, di/ci ≤ µ−1, which completes the proof.
We are finally ready to prove the second main result of this section.
Proof. (Theorem 5.2) We need to show that as N →∞, we have

Pj →
ξbj − ξbj−1

ξbj − ξaj
, Qj →

ξaj+1 − ξaj
ξbj − ξaj

, Rj →
ξbj−1 − ξaj
ξbj − ξaj

, Sj →
ξbj − ξaj+1

ξbj − ξaj
.

We only prove the result for Sj , the other coefficients being similar. From Theorem
5.1, we have

µaj+1−aj · µ
−(bj−aj+1) − 1

µ−(bj−aj) − 1
≤ Sj ≤ µ−(aj+1−aj) · 1− µbj−aj+1

1− µbj−aj
, (5.8)

so if we can show that both the upper and lower bounds tend to (ξbj−ξaj+1)/(ξbj−ξaj )
as N →∞, then we are done. Indeed, from Lemma 5.5, we can choose µ = 1−ω/N2,
so that

µN =
(

1− ω

N2

)N
→ 1 as N →∞. (5.9)

Thus, by letting λ = µN and noting that aj = Nξaj , bj = Nξbj , we can rewrite (5.8)
as

λξaj+1
−ξaj · λ

−(ξbj−ξaj+1
) − 1

λ−(ξbj−ξaj
) − 1

≤ Sj ≤ λ−(ξaj+1
−ξaj

) · 1− λξbj−ξaj+1

1− λξbj−ξaj

,
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where the exponents are now independent of N . Hence, by taking the limit as λ→ 1,
we obtain

λ(ξaj+1
−ξaj

) → 1,
λ−(ξbj−ξaj+1

) − 1

λ−(ξbj−ξaj
) − 1

→
ξbj − ξaj+1

ξbj − ξaj
,

1− λξbj−ξaj+1

1− λξbj−ξaj

→
ξbj − ξaj+1

ξbj − ξaj
.

Thus, we have

Sj →
ξbj − ξaj+1

ξbj − ξaj
,

as required.

Remark. We now see the importance of the N2 in the estimate of Lemma 5.5:
if we only had the estimate µ = 1− ω/N , then (5.9) would give µN → e−ω, and the
upper and lower bounds of Sj would not converge to the same limit.

6. Numerical Results.

6.1. A first example. We begin by considering the parallel Schwarz algorithm
(4.4) applied to the steady mesh generation problem with

M(x) =
√

1 + u2
x and u(x) =

1− eRx

1− eR
.

For R = 3 the solution u exhibits a boundary layer at x = 1 and the mesh should
have increased density in the location of the layer. For x outside of [0, 1] we have
extended M by a constant.

The single domain solution, computed by solving the BVP with a Newton itera-
tion is shown in Figure 6.1. We see a concentration of mesh points near x = 1. The
supersolution and subsolution are computed using N points where N is calculated by
equation (3.1) using the bounds m̂ = 3.4, m̌ = 1 and B = 9.1. From equation (4.6)
this gives a requirement of N = 198 points. The shooting approach outlined in the
proof of Lemma 3.1 is used along with a simple bisection approach to find s∗. We
plot the supersolution, subsolution, the uniform initial guess and the single domain
solution in Figure 6.2.
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Fig. 6.1. Single domain solution x(ξ)
obtained with a Newton iteration for the
boundary layer problem
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Fig. 6.2. Supersolution and subsolution
for the boundary layer example.
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In Figures 6.3 and 6.4 we illustrate the iterates obtained using the parallel DD
iteration on two subdomains starting from the supersolution and subsolution. The
plot shows iterates converging to the single domain solution.
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Fig. 6.3. DD iterations from the super-
solution.
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Fig. 6.4. DD iterations from the subso-
lution.

In Figures 6.5 and 6.6 we illustrate the convergence histories on subdomains one
and two with varying amounts of overlap K. We see the convergence improves as the
amount of overlap increases. This is consistent with the asymptotic convergence rate
obtained in Section 5.
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Fig. 6.5. The ‖ · ‖∞ difference between
the DD iterates on subdomain one.
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Fig. 6.6. The ‖ · ‖∞ difference between
the DD iterates on subdomain two.

We see very close agreement between the theoretical and numerically estimated
convergence rates in Table 6.1. The numerically estimated convergence rates are
obtained by averaging the ratio or errors over five iterations as we near convergence.

Overlap
10 20 30 40 50

ρ 0.8302 0.6791 0.5526 0.4482 0.3625
ρ̂ 0.8329 0.6791 0.5526 0.4482 0.3625

Table 6.1
Expected (ρ̂) and obtained (ρ) convergence rates as a function of overlap for the boundary layer

problem.
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6.2. A more challenging problem. We now consider a more difficult problem
by choosing

M(x) = 1 + 40e−(x−0.25)2/0.01 + 10e−(x−0.75)2/0.05.

This choice of M will concentrate mesh nodes where M is large, i.e. near x = 0.25 and
x = 0.75, as shown in Figure 6.7. A quick calculation gives the parameters m̌ = 1.7,
m̂ = 6 and B = 45. Our theory indicates that using N = 1496 points is sufficient to
guarantee the existence of a subsolution and supersolution for this problem.

The single domain Newton solver requires 6 iterations and the resulting solution
is shown in Figure 6.7.
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Fig. 6.7. Single domain solution computed using a Newton iteration.

In Figure 6.8 we illustrate the supersolution and subsolution for this problem
along with the single domain solution (in solid black). The uniform mesh is shown
in a dashed black line. The DD iterates obtained starting from the supersolution are
shown in Figure 6.9.
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Fig. 6.8. Supersolution and subsolution
for problem two along with the single domain
solution.
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Fig. 6.9. DD iterates from supersolution
for problem two.

The theory presented in Section 4 suggests that the sequence of meshes, xj,k

obtained from an initial uniform mesh, should lie between x̌j,k and x̂j,k, the sequence of
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meshes obtained by starting the DD iteration with the subsolution x̌ and supersolution
x̂. This is confirmed in Table 6.2 where we report the differences between x1,k and
x̂1,k and x̌1,k at the interface ξa2 . Indeed these differences remain positive and are
monotonically decreasing to zero as k increases.

k 1 2 3 4 5 6 7 8 9 10
(x̂1,k − x1,k)(ξa2) 6.18 5.31 4.58 3.86 3.30 2.74 2.32 1.89 1.56 1.23
(x1,k − x̌1,k)(ξa2) 10.26 8.76 6.68 5.59 3.99 3.16 1.93 1.39 0.36 0.18

Table 6.2
The sequence of meshes starting with a uniform initial guess are trapped between the converging

sequence of meshes starting from the subsolution and supersolution.

In Table 6.3 we see if we can recover the asymptotic rate of convergence as N
increases. As we increase N we adjust the number of mesh points in the overlap
region so as keep the overlap width approximately constant. For each value of N we
estimate the numerical rate of convergence by averaging the ratio of errors over five
iterations as we near convergence. We also record the theoretical convergence rate.
The theoretical convergence rate ρ̂ changes as the overlap width varies slightly with
increasing N .

N
25 50 75 100 125 150

ρ 0.5233 0.4789 0.4663 0.4605 0.4569 0.4547
ρ̂ 0.5102 0.4756 0.4648 0.4596 0.4564 0.4545

Table 6.3
Expected (ρ̂) and obtained (ρ) convergence rates as a function of overlap for the boundary layer

problem.

6.3. A note on robustness. As M becomes more difficult the solution of the
nonlinear BVP for the mesh transformation using a Newton iteration becomes quite
difficult. Indeed a very good initial guess is often required. Here we show that
the nonlinear Schwarz DD method, with a sufficient number of subdomains, gives
additional robustness, and is able to recover the single domain solution from a uniform
initial guess in a situation where the single domain Newton iteration fails.

Here we consider a more challenging M given by

M(x) = 1 + 30e−(x−0.25)2/0.01 + 40e−(x−0.75)2/0.05. (6.1)

In Table 6.4 we show the difficulty that the single domain Newton solve has for
this nonlinear BVP (starting from a uniform initial guess) for various values of N
near 100. During the DD solution we alter the global number of mesh points slightly
to ensure that each interior subdomain has the same number of degrees of freedom.
We see that for N near 100 the Newton iteration has difficulty converging on a single
domain. Indeed for N = 101 and N = 105 no convergence is obtained even after 100
Newton iterations. For the other values of N the convergence only seems to occur by
happenchance!
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N 100 101 103 104 105
# iters 17 NC 67 26 NC

Table 6.4
The number of single domain Newton iterations versus the number of mesh points N for the

mesh generation BVP with M given in (6.1).

We now consider dividing the unit interval into subdomains and using a parallel
Schwarz iteration to obtain the global solution. Within each subdomain, we use
Newton’s method to solve the nonlinear subdomain problems. In Table 6.5 we give
the number of Newton iterations required for each subdomain solve during the first
DD iteration as a function of the number of subdomains used. We can see that as the
number of subdomains increases the nonlinear problems solved on the subdomains
become easier. For example, using N = 101 points the global Newton iteration fails.
Using 4 subdomains convergence is achieved, albeit with great difficulty, requiring 43
Newton iterations on subdomain 1. With 8 subdomains, and again 101 global mesh
points, only 4-7 Newton iterations are required on each subdomain. The DD iteration
itself converges for both 4 and 8 subdomains and hence we are able to recover the
global solution which is not possible with the global Newton iteration.

S N Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

1 100 17
2 101 75 5
3 101 31 6 5
4 101 43 6 5 5
5 100 43 6 5 4 5
6 101 8 5 5 5 4 5
7 103 7 5 6 5 4 4 5
8 101 7 5 5 4 5 4 4 5

Table 6.5
The number of Newton iterations required on each subdomain as a function of the number of

subdomains, S, using approximately N = 100 mesh points.

In Tables 6.6 and 6.7 we repeat the experiment above but now with approximately
150 global mesh points. A similar pattern emerges. The single domain Newton
iteration fails or requires many iterations. With a sufficient number of subdomains
the global solution is recovered.

N 150 151 152 153 155 157
# iters 65 28 NC NC NC 76

Table 6.6
# iters versus N
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S N Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

1 150 65
2 151 NC 5
3 152 21 6 5
4 153 32 6 5 5
5 150 9 6 5 4 5
6 155 8 4 5 5 4 5
7 152 7 5 5 5 4 4 5
8 157 7 5 5 4 5 4 4 4

Table 6.7
The number of Newton iterations required on each subdomain as a function of the number of

subdomains, S, using approximately N = 150 mesh points.

6.4. DD within the MP framework. We conclude our presentation of nu-
merical results with a short illustration of how the domain decomposition method
performs within the MP alternating procedure described in the introduction.

Consider the solution of the two–point boundary value problem

−εu′′ + u′ = 1, u(0) = u(1) = 0,

with ε = 0.05. The physical solution

u(x) = x− 1− ex/ε

1− e1/ε
,

has a sharp boundary layer near x = 1.

The MP procedure proceeds as follows. Pick an (often uniform) initial mesh
X(0). For k = 0, 1, . . .

• Solve the physical PDE for U (k) on the mesh X(k).
• Solve for X(k+1) using the mesh DE, where the monitor function M(x) is

calculated based on X(k) and U (k), see below.

In the mesh solve step, we solve

M((xi + xi−1)/2)(xi − xi−1)−M((xi + xi+1)/2)(xi+1 − xi) = 0 (6.2)

for the new mesh {xi}, where the continuous function M is constructed by interpo-
lating the ordered pairs (x̂i−1/2,Mi−1/2) where the Mi−1/2 are computed using the
previous mesh {x̂} and physical solution on that mesh. We choose

Mi−1/2 =

√
1 +

(
ui − ui−1

x̂i − x̂i−1

)2

as an approximation to M at the half nodes x̂i−1/2 = (x̂i + x̂i−1)/2.

The convergence of the MP iteration procedure, starting with an uniform initial
mesh with N = 51 mesh points, is shown in Figure 6.10.

32



MP iteration
1 2 3 4 5 6 7 8 9 10 11

m
e
s
h
 c

h
a
n
g
e

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 6.10. MP iteration convergence for a boundary layer problem.

The initial uniform mesh and the solution to the boundary value problem is shown
in Figure 6.11.
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Fig. 6.11. Solution of the BVP and an initial uniform mesh.

The solution of the BVP and the first mesh X(1) obtained by solving (6.2) during
the MP process described above is shown in Figure 6.12.
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Fig. 6.12. Solution of the BVP and the first mesh obtained during our MP procedure.

During the MP procedure one could linearize the mesh solves by simply evaluat-
ing the mesh density function at the previously computed mesh and solution. In other
words, instead of constructing M̃ by interpolation and evaluating at (xi+xi−1)/2 and
(xi + xi+1)/2, one could instead use the values of Mi−1/2 and Mi+1/2 directly. This

results in a different mesh X(1), shown in Figure 6.13. Comparing Figures 6.12 and
6.13, we see that the initial mesh quality using the linearized variant is clearly not as
good as the MP procedure we describe.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 6.13. Solution of the BVP and the first mesh obtained during the linearized MP procedure.

During each MP iteration, the previous mesh {x̂i} is used as initial guess for
the DD iteration to obtain the new mesh. Using two subdomains, the number of DD
iterations required for the difference in DD approximations to agree within 10−5 for
the first 7 MP iterations are given in Table 6.8.
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MP iteration 1 2 3 4 5 6 7
# DD iterations 63 49 54 33 19 22 11

Table 6.8
The number of DD iterations for each MP iteration.

We can see that starting the DD iteration for (6.2) using the mesh found during
the previous MP iteration generally reduces the number of DD iterations required
to converge to the specified tolerance.

7. Conclusions. In this paper, we have shown that when the integral form of
the moving mesh PDE is discretized using a quadrature rule, the resulting nonlinear
algebraic system may not have a solution if the number of grid points is too small.
Using M -function theory, we have proved the existence and uniqueness of the solution
of the discrete problem when the number of grid points is large enough. Moreover, we
have shown that the parallel and alternating Schwarz methods converge to the unique
solution, so they can be used to solve the discrete solution in parallel. In fact, as the
mesh is refined, these methods behave asymptotically the same way as their continuous
counterparts, with the same iteration matrix and the same convergence rates. This
is also confirmed by our numerical results. Our numerical experiments show that the
domain decomposition algorithms are often more robust than the methods that try
to find the single-domain solution all at once, such as Newton’s method. And finally,
we show that the DD approach can effectively be used within the MP iteration to
solve the coupled problem.

We believe that this M -function theory can be applied to analyze the behavior
of domain decomposition methods when applied to other nonlinear PDEs; this is a
subject of ongoing investigation. Ongoing work also focuses on understanding the
behavior when optimized conditions are used, see [22], as well as for the 2D mesh
equation in [33].

Appendix A. M-function charaterization. To prove Lemma 2.8, we will first
need the following geometrical fact.

Proposition A.1. Let D be an open convex subset of Rn. For two given points
x, y ∈ D, let r > 0 be a constant such that the open balls Br(x) and Br(y), of radius r
and centered at x and y respectively, are contained in D. Then for any intermediate
point p = (1− t)x+ ty with t ∈ [0, 1], we have Br(p) ⊂ D.

Proof. Let v ∈ Rn be a vector with ‖v‖ < r, so that x + v ∈ D and y + v ∈ D.
Then by the convexity of D, we have

(1− s)(x+ v) + s(y + v) = (1− s)x+ sy + v ∈ D ∀s ∈ [0, 1].

Choosing s = t shows that p+v ∈ D. Since v is arbitrary, we conclude that Br(p) ⊂ D.

Now we proceed to prove Lemma 2.8 which we restate here.

Lemma 2.8 Let D be a convex and open subset of Rn. Assume F : D ⊂ Rn → Rn

is off-diagonally antitone, and that for any x ∈ D, the functions qi : Si ⊂ R → Rn
defined as

qi(τ) =

n∑
j=1

fj(x + τei), i = 1, . . . , n, with Si = {τ : x + τei ∈ D },
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are isotone. Finally, assume for every i that either qi is strictly isotone, or there
exists a node j = j(i) such that a path j  i exists and qj is strictly isotone. Then F
is an M -function.

Proof. To prove Lemma 2.8 we need to show that F is inverse isotone, so let
x 6= y ∈ D be such that F (x) ≤ F (y). We must now show that x ≤ y. Let r > 0 be
such that Br(x) and Br(y) are both contained in D. Moreover, let xs = (1−s)y+sx,
so that s ∈ [0, 1] =⇒ xs ∈ D. Now define t ∈ (0, 1] so that

1

t
= max

{
1,

⌈
N maxi |xi − yi|

r

⌉}
=: M ∈ N.

Then the points y = x0,xt,x2t, . . . ,xMt = x all satisfy Br(xkt) ⊂ D for k = 0, . . . ,M
by Proposition A.1. Now define the sets

N− = {i ∈ N : yi < xi}, N+ = {i ∈ N : yi ≥ xi}.

Let us assume N− 6= ∅, and let i1, . . . , im be nodes of N− and set

zj = (xij − yij )eij , j = 1, . . . ,m, z =

m∑
j=1

zj ,

where eij is the ij-th coordinate vector. Noting that ‖tzj‖ ≤ r/N , we see that the
sequence

y + tz1,y + tz1 + tz2, . . . ,y + t

m∑
j=1

zj = y + tz

all belong to D, since D is convex. Then by the isotonicity of the qi, we have

n∑
j=1

fj(y) ≤
n∑
j=1

fj(y + tz1) ≤
n∑
j=1

fj(y + tz1 + tz2) ≤ · · · ≤
n∑
j=1

fj(y + tz). (A.1)

Splitting the last sum into sums over N− and N+, we use the antitonicity of the fj
to obtain

n∑
j=1

fj(y + tz) =
∑
j∈N−

fj(y + tz) +
∑
j∈N+

fj(y) ≤
∑
j∈N−

fj(xt) +
∑
j∈N+

fj(y). (A.2)

Thus, we have ∑
j∈N−

fj(y) ≤
∑
j∈N−

fj(xt). (A.3)

We can now continue this argument to obtain∑
j∈N−

fj(y) ≤
∑
j∈N−

fj(xt) ≤
∑
j∈N−

fj(x2t) ≤ · · · ≤
∑
j∈N−

fj(xMt) =
∑
j∈N−

fj(x).

(A.4)
But since we had assumed F (x) ≤ F (y), we must have fj(y) = fj(x) for all j ∈ N−,
so that all the inequalities in (A.4) (and hence (A.1), (A.2) and (A.3)) are in fact
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equalities. This, in turn, shows that qi cannot be strictly isotone for any i ∈ N−.
Thus, there must exist a strict link (i, i′) such that i ∈ N+, i′ ∈ N−, i.e., we have

fi(y) > fi(y + t(xi′ − yi′)ei
′
)

as well as

fj(y) ≥ fj(y + t(xi′ − yi′)ei
′
) whenever j ∈ N+.

Thus,

n∑
j=1

fj(y) =
∑
j∈N−

fj(y + tz) +
∑
j∈N+

fj(y)

>
∑
j∈N−

fj(y + tz) +
∑
j∈N+

fj(y + t(xi′ − yi′)ei
′
)

≥
∑
j∈N−

fj(y + tz) +
∑
j∈N+

fj(y + tz)

=

n∑
j=1

fj(y + tz) =

n∑
j=1

fj(y),

which is a contradiction. Thus N− must be empty, so that F is inverse isotone, and
hence an M -function.

Appendix B. Discrete maximum principles. In this section, we prove two
discrete maximum principles, which are used to deduce the number of grid points
necessary to guarantee the existence of subdomain iterates.

Lemma B.1 (Steady mesh generation). Let {ui}Ni=0 be such that u0 = uL, uN =
uR and

M̃(ui, ui+1)(ui+1 − ui)− M̃(ui−1, ui)(ui − ui−1)

for 1 ≤ i ≤ N − 1. Then

min(uL, uR) ≤ ui ≤ max(uL, uR).

Proof. We have

M̃(u0, u1)(u1 − u0) = M̃(u1, u2)(u2 − u1) = · · · = M̃(uN−1, uN )(uN − uN−1).

Since M(u, v) ≥ m̌ > 0 for all u and v, the differences ui−ui−1 all have the same sign,
so there can be no internal minima or maxima. Thus the maximum and minimum
values are u0 = uL and uN = uR respectively.

Lemma B.2 (Time-dependent mesh generation). Let {ui}Ni=0 be such that u0 =
uL, uN = uR and

ui − θγ(M̃(ui, ui+1)(ui+1 − ui)− M̃(ui−1, ui)(ui − ui−1))

= x
[ν]
i + (1− θ)γ(M̃(x

[ν]
i , x

[ν]
i+1)(x

[ν]
i+1 − x

[ν]
i )− M̃(x

[ν]
i−1, x

[ν]
i )(x

[ν]
i − x

[ν]
i−1)). (B.1)
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for 1 ≤ i ≤ N − 1. If 2(1− θ)γm̂ ≤ 1, then

min(uL, uR,min
i
xi) ≤ ui ≤ max(uL, uR,max

i
xi).

Proof. We show only the maximum, the minimum being similar. Let

m1 = M̃(ui−1, ui), m2 = M̃(ui, ui+1),

m3 = M̃(x
[ν]
i−1, x

[ν]
i ), m4 = M̃(x

[ν]
i , x

[ν]
i+1),

so that m̌ ≤ mj ≤ m̂ for j = 1, 2, 3, 4, and let x̄ = maxi x
[ν]
i . Then for i = 1, . . . , N−1,

the right-hand side of (B.1) can be bounded by

x
[ν]
i + (1− θ)γ(m4(x

[ν]
i+1 − x

[ν]
i )−m3(x

[ν]
i − x

[ν]
i−1))

= (1− γ(1− θ)(m3 +m4)︸ ︷︷ ︸
≥0

)x
[ν]
i + γ(1− θ)m3x

[ν]
i−1 + γ(1− θ)m4x

[ν]
i+1

≤ (1− γ(1− θ)(m3 +m4))x̄+ γ(1− θ)m3x̄+ γ(1− θ)m4x̄ = x̄.

On the other hand, suppose ui is the maximum value, i.e., ui ≥ uj for all j. Then we
either have i = 0 or i = N , or the left-hand side of (B.1) satisfies

ui − θγ(m1(ui−1 − ui) +m2(ui+1 − ui)︸ ︷︷ ︸
≤0

) ≥ ui.

Thus, if the maximum occurs at 1 ≤ i ≤ N − 1, then we must have ui ≤ x̄.
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