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A well-known property of anM-matrixM is that the inverse is ele-

ment-wise non-negative, whichwewrite asM−1 � 0. In this paper,

we consider element-wise perturbations of non-symmetric tridi-

agonalM-matrices and obtain bounds on the perturbations so that

the non-negative inverse persists. Sufficient bounds are written in

terms of decay estimates which characterize the decay of the ele-

ments of the inverse of the unperturbed matrix. Results for general

symmetric matrices and symmetric Toeplitz matrices are obtained

as special cases and compared with known results.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A rich class of matrices known as M-matrices were introduced by Ostrowski in 1937 [1], with

reference to thework ofMinkowski [2,3]. Approximately 50 different but equivalent characterizations

of M-matrices are given by Bermann and Plemmons [4]. A condition which is easy to check is that a

matrixM is anM-matrix if and only ifmij � 0 for i /= j,mii > 0 andM is generalized strictly diagonally

dominant. AmatrixM is said to be generalized (strictly) diagonally dominant if there exists a diagonal

matrix D with positive entries so that MD is (strictly) diagonally dominant. Of particular importance

to us is the fact that since M is an M-matrix it is non-singular and M−1 � 0, where the inequality is

satisfied element-wise.

In this paper, we consider the inverses of perturbedM-matrices. Specifically we consider the effect

of changing single elements of M. If these perturbations do not change the M-matrix sign pattern,

then a sufficient condition to ensure the inverse is non-negative is obtained by imposing the required

diagonal dominance property.We explore perturbationswhich destroy the sign pattern and ask under

what conditions are the inverses of the resultingmatrices non-negative. In [5], the authors considered

perturbations of the second diagonals (elements (i, i + 2) and (i, i − 2)) of symmetric tridiagonal M-
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matrices andanexampleof a specific single element-wiseperturbationof anon-symmetric tridiagonal

M-matrix. In this paper,we extend these results and obtain bounds on themaximumallowable pertur-

bationmade to a general element of a non-symmetric tridiagonalM-matrix.We extract the analogous

results for symmetric and Toeplitz matrices as special cases.

The remainder of the paper is organized as follows. In Section 2, we review known properties

of inverses of tridiagonal M-matrices. Section 3 details the main results for general element-wise

perturbations of non-symmetric tridiagonal matrices made to elements outside of the tridiagonal

band. In Section 4, we consider the special case of symmetric and ToeplitzM-matrices and show how

these results agree with and extend the results found in [5]. We then discuss perturbations made

to elements inside the diagonal band in Section 5. We conclude in Section 6 with comments and

suggestions for future work.

2. Inverses of tridiagonalM-matrices

Characterizations of the inverses of banded matrices have been considered by many authors, cf.

[6–9]. Here we will review the results which are important for the remainder of this paper.

Throughout this paper we use the following notation for a general tridiagonalM-matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 −c1 0 · · · 0

−b1 a2 −c2
.
.
.

0
. . .

. . .
. . . 0

.

.

. −bn−2 an−1 −cn−1

0 · · · 0 −bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ai, bi and ci > 0, and each ai is large enough thatM is strictly diagonally dominant.

The following quantities were originally given by Nabben [10] but were refined for M-matrices by

Peluso [11]:

τi = ci
ai − bi−1

, ωi = bi−1

ai − ci
,

δi = ci
ai
, γi = bi−1

ai

for i = 1, . . . ,n, with b0 = c0 = bn = cn = 0 for consistency. Nabben [10] gives the following result

regarding the decay rate of elements of the inverse of M. This result will enable a comparison of

any two elements in the same column of the inverse.

Theorem 1. If m−1
ij

are elements of M−1 then

δim
−1
i+1,j

� m−1
ij

� τim
−1
i+1,j

, i = 1, . . . , j − 1

and

γim
−1
i−1,j

� m−1
ij

� ωim
−1
i−1,j

, i = j + 1, . . . ,n.

For notational convenience we define the following quantities:

δ = min
i=2,...,n

δi, γ = min
i=i,...,n−1

γi,

τ = max
i=2,...,n

τi, and ω = max
i=1...n−1

ωi. (1)

It is useful to note that δi, γi, τi, and ωi are all positive values less than 1 due to the assumption of strict

diagonal dominance of M. The decay estimates above can be refined iteratively, see [10] for details.

These improved estimates can be used in place of δi, τi, γi and ωi improving the quality of the bounds

obtained in the results below.
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The decay estimates also give bounds on the diagonal entries of the inverse which are easy to

compute. SinceMM−1 = I, we have

−bi−1m
−1
i−1,i

+ aim
−1
ii

− cim
−1
i+1,i

= 1 for i = 1, . . . ,n,

where we set b0 = m−1
0,1

= cn = m−1
n+1,n

= 0 for consistency. Using the decay elements described in

Theorem 1, we see

(−τi−1bi−1 + ai − ωi+1ci)m
−1
ii

� 1

or

m−1
ii

� 1

ai − τi−1bi−1 − ωi+1ci

with τ0 = ωn+1 = 0 for consistency. This result, also found in [10], is stated as Lemma 1.

Lemma 1. If the diagonal entries of M−1 are denoted m−1
ii

then they are bounded as

m−1
ii

� μ ≡ max
i=1,...,n

1

ai − τi−1ci−1 − ωi+1bi
. (2)

The decay rates τi, ωi, γi and δi from Theorem 1 bound ratios of consecutive elements in columns of

the inverse but are not dependent on the column index itself (as the single subscript would suggest).

The proof of this follows from a result by Capovani [12] which states that for any tridiagonal matrixM,

there exist four vectors u, v, x, and y where uivi = xiyi for all i, so thatm−1
ij

are given by

m−1
ij

=
{
uivj , i � j,

xiyj , i � j.
(3)

Therefore

m−1
i,j1

m−1
i+1,j1

= uivj1
ui+1vj1

= ui
ui+1

= uivj2
ui+1vj2

=
m−1

i,j2

m−1
i+1,j2

for i < j1, j2

m−1
i,j1

m−1
i−1,j1

= xiyj1
xi−1yj1

= xi
xi−1

= xiyj2
xi−1yj2

=
m−1

i,j2

m−1
i−1,j2

for i > j1, j2. (4)

Hence proving the ratios are independent of the column index j.

3. Non-symmetric M-matrices

In this section, we explore the effects of single element perturbations made to tridiagonal M-

matrices andfindaboundon the sizeof a general perturbation that ensures the inverseof theperturbed

matrix is non-negative.

3.1. Perturbing element (1, 3)

Let P be the perturbed matrix, P = M + E where E = uvT with u = (h, 0, . . . , 0)T and v =
(0, 0, 1, 0, . . . , 0)T , so that we perturb the (1, 3) element ofM−1. How small must h be in order to ensure

that P−1 is element-wise non-negative?

In [13], Sherman and Morrison give an explicit formula for the inverse of the perturbed matrix:

P−1 = (M + uvT )−1 = M−1 − M−1uvTM−1

1 + vTM−1u
.

A couple of quick calculations show vTM−1u = hm−1
31

and uvTM−1 is amatrixwhose first row is h times

the third row ofM−1 with the rest of the rows being zeroes. So P−1 � 0 if and only if



Author's personal copy

S.C. Kennedy, R.D. Haynes / Linear Algebra and its Applications 430 (2009) 2312–2323 2315

M−1 · h

1 + hm−1
31

·

⎛
⎜⎜⎜⎜⎝
m−1

31
m−1

32
· · · m−1

3n
0 0 · · · 0
.
.
.

. . .
.
.
.

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ � M−1.

We now use the decay estimates given in Theorem 1 to find an upper bound on h to ensure P−1 � 0.

Element-wise, the above inequality requires

sm−1
i,1

m−1
3,j

� m−1
ij

(5)

for all 1 � i, j � n where s = h/(1 + hm−1
31

). We find our bound on h by finding a restriction on s for

which (5) will hold for all i and j.

When (i, j) = (1, 1) we use the decay estimates in Theorem 1 and find that the following sequence

of inequalities hold:

sm−1
11

m−1
31

= sm−1
11

m−1
31

m−1
21

m−1
21

m−1
11

m−1
11

� sω2ω3m
−1
11

m−1
11

� sω2ω3μm
−1
11

.

Ifwe then require that sω2ω3μm
−1
11

� m−1
11

then this indicates that s � 1
μω2ω3

is a sufficient requirement

to make sm−1
11

m−1
31

� m−1
11

.

For (i, j) = (1, 2) we see

sm−1
11

m−1
32

= sm−1
11

m−1
32

m−1
22

m−1
22

m−1
12

m−1
12

� s
ω3

δ1
μm−1

12
,

so making s � δ1
μω3

will force sω3
δ1

μm−1
12

� m−1
12

, so this restriction on s is sufficient.

When i = 1 and j � 3 there is an obvious pattern, so we can group these cases together. We find

sm−1
11

m−1
3j

= sm−1
11

m−1
3j

m−1
2j

m−1
2j

m−1
1j

m−1
1,j

� s
μ

δ1δ2
m−1

1j
� m−1

1j
if s � δ1δ2

μ
.

Now consider j � i = 2,

sm−1
21

m−1
3j

= s
m−1

2,1

m−1
1,1

m−1
11

m−1
3,j

m−1
2,j

m−1
2,j

� sμω2ω3m
−1
ij

� m−1
ij

if s � 1

μω2ω3
.

Then when j > i = 2,

sm−1
21

m−1
3j

= s
m−1

2,1

m−1
1,1

m−1
11

m−1
3,j

m−1
2,j

m−1
2,j

� sμω2
1

δ2
m−1

ij
� m−1

ij
if s � δ2

μω2
.

When j � 3 � i things get a little more complicated. We start off by noting

sm−1
i1

m−1
3j

= s

i∏
x=2

m−1
x,1

m−1
x−1,1

m−1
11

i∏
y=4

m−1
y−1,j

m−1
y,j

m−1
ij

. (6)

In Section 2, we demonstrated that the ratio between two consecutive elements in a column is

independent of the column index, it is only dependent on the row and which side of the diagonal the

elements are on. The result is summarized in (4), and allows for cancellation since
m−1

x,1

m−1
x−1,1

= m−1
y,j

m−1
y−1,j

when

x = y. Therefore, we may simplify (6) as

sm−1
i1

m−1
3j

= s
m−1

2,1

m−1
1,1

m−1
3,1

m−1
2,1

m−1
1,1

m−1
ij

� sω2ω3μm
−1
ij

.

This will be less than m−1
ij

as long as s � 1
ω2ω3μ

.
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When 3 � j � i we again use (4) and find

sm−1
i1

m−1
3j

= s

i∏
x=2

m−1
x,1

m−1
x−1,1

m−1
1,1

j−1∏
y=3

m−1
y,j

m−1
y+1,j

l∏
z=j+1

m−1
z−1,j

m−1
z,j

m−1
ij

= s

j∏
x=2

m−1
x,1

m−1
x−1,1

m−1
1,1

j−1∏
y=3

m−1
y,j

m−1
y+1,j

m−1
ij

� s

j∏
x=2

ωx

j−1∏
y=3

τyμm
−1
ij

.

Hence we require s � 1
μω2···ωjτ3···τj−1

.

Finally, if j > i � 3 then we have

sm−1
i1

m−1
3j

= s

i∏
x=2

m−1
x,1

m−1
x−1,1

i−1∏
y=3

m−1
y,j

m−1
y+1,j

m−1
ij

� m−1
ij

if s � 1

μω2 · · · ωiτ3 · · · τi−1
.

We now wish to find the smallest of these bounds on s, since this will guarantee that (5) holds

for all (i, j), and this in turn guarantees the non-negativity of elements of the inverse of the perturbed

M-matrix, P. Using the fact that ωi, τi and δi are all less than one we are able to show that the smallest

restriction is δ1δ2
μ

.

Since s � h, forcing h to be less than δ1δ2
μ

ensures that swill also be less than this bound. Therefore,

m−1
ij

� sm−1
i,k

m−1
l,j

for all (i, j), which in turn ensures that P−1 will be element-wise non-negative. This

gives us the following theorem.

Theorem 2. Assume M is a strictly diagonally dominant tridiagonal M-matrix. Let u = (h, 0, 0, . . . , 0, 0)T

and v = (0, 0, 1, 0, . . . , 0)T and form the rank-1 matrix uvT . To ensure the matrix P = M + uvT has a non-

negative inverse (element-wise) it is sufficient that h satisfies

h � δ2

μ
,

where δ and μ are defined in (1) and (2), respectively.

As an illustration, consider the 40 × 40 M-matrix where bi = ci = 1 and ai = 4 for all i. Our bound

implies that if h � 0.208333 then the inverse will be non-negative. The actual largest value of h for

which the inverse will be element-wise non-negative, is 0.25. The actual value may be computed

numerically using an exhaustive search or more efficiently by employing a bisection method to find

the h value at which the inverse changes from having all non-negative elements to having at least one

negative element.

3.2. Perturbing element (1, k) for k � 3

We will now consider a perturbation in position (1, k). Just as before, we express our perturbed

matrix P as P = M + uvT where M is our unperturbed tridiagonal matrix and u and v are vectors of

length n. In this case, to perturb the entry (1, k) we choose v = (0, . . . , 0,h, 0, . . . , 0)T , where h is in the

kth position, and u = (1, 0, 0, . . .)T . Using the Sherman–Morrison formula and simplifying in a similar

way, we find that we need

m−1
ij

� sm−1
i,1

m−1
k,j

for all (i, j), where s = h

1+hm−1
k,1

, in order to ensure that the inverse is non-negative. The bound on s is

found by considering all combinations of i and j.

When i � k we have the following possibilities and results:

j � i sm−1
i,1

m−1
k,j

� s

i∏
x=2

m−1
x,1

m−1
x−1,1

m−1
11

k∏
y=i+1

m−1
y,j

m−1
y−1,j

m−1
ij

μ
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� s

i∏
x=2

ωx

k∏
y=i+1

ωyμm
−1
ij

� m−1
ij

if s � 1

ω2 · · · ωkμ
,

i � j � k sm−1
i,1

m−1
k,j

� s

i∏
x=2

m−1
x,1

m−1
x−1,1

m−1
11

k∏
y=j+1

m−1
y,j

m−1
y−1,j

j−1∏
z=i

m−1
z+1,j

m−1
z,j

m−1
ij

� s

i∏
x=2

ωx

k∏
y=j+1

ωy

j−1∏
z=i

1

δz
μm−1

ij
� m−1

ij

if s � δi · · · δj−1

ω2 · · · ωiωj+1 · · · ωkμ
,

k � j sm−1
i,1

m−1
k,j

� s

i∏
x=2

m−1
x,1

m−1
x−1,1

m−1
11

k−1∏
y=i

m−1
y+1,j

m−1
y,j

m−1
i,j

� s

i∏
x=2

ωx

k−1∏
y=i

1

δy
μm−1

i,j
� m−1

i,j
if s � δi · · · δk−1

ω2 · · · ωiμ
.

Similarly, we look at the possible cases when k < i and the resulting upper bounds on s are shown

in the following table:

j � k k � j < i j � i

Bound on s 1
ω2···ωkμ

1
ω2···ωjτk ···τj−1μ

1
τk ···τi−1ω2···ωiμ

We now have six categories of restrictions on s. If all of these restrictions are met then m−1
ij

�
sm−1

i,1
m−1

k,j
for all (i, j), and so P−1 will be element-wise non-negative. Since τi, ωi and δi are always less

than 1 we find that the minimum bound on s over the possible (i, j) for a fixed k will be s � δ1···δk−1
μ

.

This gives us the following theorem.

Theorem 3. Assume M is a strictly diagonally dominant tridiagonal M-matrix. Let v be a vector of zeroes

with h in the kth position (where k � 3) and u be a vector of zeroes with 1 in the first position, so that they

form the rank-1matrix uvT . To ensure the matrix P = M + uvT has a non-negative inverse (element-wise)

it is sufficient that h satisfies

h � δk−1

μ
,

where δ and μ are defined in (1) and (2), respectively.

This bound indicates that the further down the rowwewish to make our perturbation, the smaller

the allowable perturbation in order to ensure that the inverse will be non-negative. Note that this

result is consistent with the result found in Section 3.1.

3.3. Perturbing a general element (k, l) for k � l + 2 or k � l − 2

Wewish to generalize our result to an arbitrary single element perturbation in position (k, l)where

k � l + 2 or k � l − 2. Similar to the previous cases, we build our perturbed matrix P by defining the

vectors u and v such that thematrix uvT is amatrix of zeroes, except for element (k, l)which has a value

of h. Continuing in the same manner as before, we find that we must have m−1
ij

� sm−1
i,k

m−1
l,j

where
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Table 1

Restrictions on s when perturbing above or below the diagonal band.

l � k + 2 k � l + 2

Bound on s Bound on s

j � i � k < l 1
τi ···τk−1ωi+1 ···ωlμ

j � i � l � k 1
τi ···τk−1ωi+1 ···ωlμ

i � j � k, l 1
τj ···τk−1ωj+1 ···ωlμ

i � j � l � k 1
τj ···τk−1ωj+1 ···ωlμ

i � k � j � l
δk ···δj−1

ωj+1 ···ωlμ
i � l � j � k 1

τlτl+1 ···τkμ

i � k < l � j
δk ···δl−1

μ
i � l � k � j 1

τlτl+1 ···τk−1μ

j � k � i � l 1
ωk+1 ···ωlμ

j � l � i � k
γi+1 ···γl

τi ···τk−1μ

k � j � i � l 1
ωk+1 ···ωlμ

l � j � i � k
γj+1 ···γi

τl ···τj−1τi ···τk−1μ

k � i � j � l
δi ···δj−1

ωk+1 ···ωiωj+1 ···ωlμ
l � i � j � k 1

τl ···τk−1μ

k � i � l � j
δi ···δl−1

ωk+1 ···ωiμ
l � i � k � j 1

τl ···τk−1μ

j � k < l � i 1
ωk+1 ···ωlμ

j � l < k � i
γl+1 ···γk

μ

k � j � l � i 1
ωk+1 ···ωlμ

l � j � k � i
γj+1 ···γk
τl ···τj−1μ

k < l � j � i 1
τl ···τj−1ωk+1 ···ωjμ

l < k � j � i 1
τl ···τj−1ωk+1 ···ωjμ

k < l � i � j 1
τl ···τi−1ωk+1 ···ωiμ

l < k � i � j 1
τl ···τi−1ωk+1 ···ωiμ

s = h

1+hm−1
l,k

for all (i, j) in order to ensure that the inverse is non-negative. There are many different

combinations of i, j, k and l which we need to consider. In particular we must consider separately the

cases when l � k + 2 and when k � l + 2 (in other words when the perturbation is above or below

the diagonal). Then given a fixed k and l, we must consider the restriction on s for every possible (i, j)

pair, as we did in the previous sections. The resulting restrictions are presented in Table 1. More detail

regarding the calculations can be found in [14].

Since for a fixed l and k we require the restrictions to hold for all possible i and j, we compare to

find the strictest (smallest) restriction. We know δ, τ and ω are always less than 1, so we find that the

smallest restriction on s is

s � δk · · · δl−1

μ
or s � γl+1 · · · γk

μ
(7)

if the perturbation is above or below the diagonal, respectively.

We summarize these results in the following theorem.

Theorem 4. Assume M is a strictly diagonally dominant tridiagonal M-matrix. Let u be a vector of zeroes

with h in the kth position and v be a vector of zeroes with a 1 in the position lth, so that they form the rank-1

matrix uvT . To ensure the matrix P = M + uvT has a non-negative inverse (element-wise) it is sufficient

that h satisfies

h � δl−k

μ
if l � k + 2

or

h � γ k−1

μ
if l � k − 2,

where δ, γ and μ are defined in (1) and (2).

We note that the bounds in Theorem 4 are consistent with the results in Sections 3.1 and 3.2. Also,

we see that below the diagonal the allowable perturbation gets smaller as we increase the row index

or decrease the column index. Similarly when above the diagonal the allowable perturbation gets
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smaller as we decrease the row index or increase the column index. In other words the further from

the diagonal we wish to make our perturbation the smaller it will have to be. Finally, we note that we

have found a restriction that does not depend on the placement of the perturbation along a diagonal,

although the tightness of the boundwill depend on the exact placement. In particular this leads to the

following corollary.

Corollary 1. AssumeM is a tridiagonal M-matrix. Let u be a vector of zeroes with h in the kth position and

v be a vector of zeroes with a 1 in position k + 2, so that they form the rank-1 matrix uvT . To ensure the

matrix P = M + uvT has a non-negative inverse (element-wise) it is sufficient that h satisfies

h � δ2

μ
,

where δ and μ are defined in (1) and (2).

As indicated above, our bounds (see Theorem 4) suggest that themaximum allowable perturbation

to maintain non-negativity of the inverse decreases as the “distance” from the diagonal increases.

To demonstrate this we consider a strictly diagonally dominant M-matrix M = tridiag{−1, 4,−2}. For
eachpairof indices (k, l), |k − l| � 2, (8)depicts theactualmaximumallowableperturbation (computed

numerically) to the entries outside the tridiagonal band. The example supports our theoretical results:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00000 0.00000 1.00000 0.57143 0.33333 0.19512 0.11429 0.06695

0.00000 0.00000 0.00000 1.00000 0.57143 0.33333 0.19512 0.11429

0.25000 0.00000 0.00000 0.00000 1.00000 0.57143 0.33333 0.19512

0.07143 0.25000 0.00000 0.00000 0.00000 1.00000 0.57143 0.33333

0.02083 0.07143 0.25000 0.00000 0.00000 0.00000 1.00000 0.57143

0.00610 0.02083 0.07143 0.25000 0.00000 0.00000 0.00000 1.00000

0.00179 0.00610 0.02083 0.07143 0.25000 0.00000 0.00000 0.00000

0.00052 0.00179 0.00610 0.02083 0.07143 0.25000 0.00000 0.00000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

4. Symmetric and Toeplitz cases

If the matrix M is symmetric (mij = mji) or Toeplitz (ai = aj , bi = bj and ci = cj for all i and j), then

the bounds on hmay be tightened.

IfM is symmetric, then we have

m−1
ij

m−1
i±1,j

=
m−1

ji

m−1
j,i±1

.

This allows us to compare elements along rows as well as columns and hence we gain much flexibility

in our analysis.

As an example we consider the effect of symmetry when perturbing the (1, 3) entry. In our analysis

of this case we required

sm−1
i,1

m−1
3,j

� m−1
ij

for all i and j, or equivalently

s �
m−1

ij

m−1
i,1

m−1
3,j

=

⎧⎪⎪⎨
⎪⎪⎩

1

m−1
11

m−1
11

m−1
2,1

· · · m−1
i−1,1

m−1
i,1

m−1
ij

m−1
i+1,j

· · · m−1
2,j

m−1
3,j

if i < 3,

1

m−1
11

m−1
11

m−1
2,1

· · · m−1
i−1,1

m−1
i,1

m−1
ij

m−1
i−1,j

· · · m−1
4,j

m−1
3,j

if i � 3.

Using what we know about the ratio of two consecutive elements of a column, it is possible to show

that the tightest restriction on s arises when i = 1 and j � 3. Therefore, we consider only this case.
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When i = 1 and j � 3 we require

sm−1
11

m−1
3j

� m−1
1,j

.

Symmetry allows us to manipulate our inequalities in additional ways. For example, we could

comparem−1
11

tom−1
1,j

andm−1
3j

to m−1
33

along rows. With some cancellation we see

sm−1
11

m−1
3j

= s

3∏
x=2

m−1
x−1,1

m−1
x,1

m−1
1,j

m−1
3,3

� s
μ

γ2γ3
m−1

1,j
� m−1

1,j
if s � γ2γ3

μ
.

Another option is to compare m−1
11

to m−1
1,j

and m−1
3j

to m−1
22

using both column-wise and row-wise

comparisons. This gives

sm−1
11

m−1
3j

= s
m−1

1,1

m−1
2,1

m−1
3,j

m−1
2,j

m−1
1,j

m−1
2,2

� s
μ

γ2δ2
m−1

1,j
� m−1

1,j
if s � γ2δ2

μ
.

Yet another possibility is to compare m−1
11

to m−1
1,j

andm−1
3j

to m−1
jj

,

sm−1
11

m−1
3j

� s

j∏
x=2

1

γx

j−1∏
y=3

τyμm
−1
1,j

� m−1
1,j

if s � γ2 · · · γj
τ3 · · · τj−1μ

.

There are many other possible manipulations, however, in other cases we found the resulting restric-

tions on s to be very similar to those obtained above.

Previously we found restrictions on s for all possible i and j which had to hold simultaneously,

however, here we are dealing with a specific i and j so we simply need the largest restriction to hold.

Which of these bounds is the largest depends on the specific matrix. For example, if

M =

⎛
⎜⎜⎜⎜⎝
10 −1 0 0 0

−1 50 −8 0 0

0 −8 100 −1 0

0 0 −1 20 −8

0 0 0 −8 10

⎞
⎟⎟⎟⎟⎠ ,

we have

δ1δ2

μ
= 1008

9500
≈ 0.1061,

γ2γ3

μ
= 1008

95000
≈ 0.01061,

δ2γ2

μ
= 1008

47500
≈ 0.02122 and

γ2 · · · γ5
τ3τ4μ

= 14095872

152000000
= 0.092736.

As we can see, our potential bounds vary greatly due to the path of comparison and the accuracy

of the estimates δi, γi and τi. The largest of these is 0.1061, so in this particular case we can perturb

the entry (1, 3) by as much as 0.1061 and still be sure that the inverse will be element-wise non-

negative. Numerical tests tell us the actual maximum perturbation allowable is approximately 0.16.

Symmetry tells us this is also the largest we can perturb entry (3, 1). If we had tried to get a bound a

perturbation of entry (3, 1) without taking symmetry into account, Theorem 4would have told us that

h � 0.01061 which is far from the actual bound of 0.16. In this case symmetry helped us tighten our

bound considerably.

As a second example consider the symmetric matrix

M =

⎛
⎜⎜⎜⎜⎝
50 −1 0 0 0

−1 40 −1 0 0

0 −1 30 −1 0

0 0 −1 20 −1

0 0 0 −1 10

⎞
⎟⎟⎟⎟⎠ .



Author's personal copy

S.C. Kennedy, R.D. Haynes / Linear Algebra and its Applications 430 (2009) 2312–2323 2321

Here we find

δ1δ2

μ
≈ 0.004973,

δ2γ2

μ
≈ 0.006217,

γ2γ3

μ
≈ 0.008289, and

γ2γ3γ4γ5

τ3τ4μ
≈ 0.02284.

Numerically we find that the largest h is 0.025. So in this case choosing to use γ2γ3γ4γ5
τ3τ4μ

as a bound for

h is best.

Nowsuppose thematrixM is both symmetricandToeplitz. Thismeans that all thediagonal elements

have the same value, a, and all the elements on the sub and super diagonals have the same value, b.

Our decay parameters will be

τi = ωi = b

a − b
, δi = γi = b

a

for all i, except i = 1where τ1 = δ1 = b
a andω1 = γ1 = 0. Thismeans that three of our potential bounds,

δ1δ2
μ

, δ2γ2
μ

and γ2γ3
μ

will be equal. The fourth potential bound which we have considered in this section

will be smaller than the others since it simply has extra factors of the form
γi

τi−1
� 1. We can therefore

say that when M is a symmetric Toeplitz matrix, then we can perturb the entry (1, 3) by as much

as τ2

μ
where τ = b

a , and still be sure that the inverse of the perturbed matrix will be element-wise

non-negative.

Indeed, symmetry and the Toeplitz structure can be used to obtain following two corollaries.

Corollary 2. Let M be a strictly diagonally dominant symmetric tridiagonal M-matrix. A general element

(k, l), where k � l + 2 or k � l − 2, can be perturbed by as much as

γ |k−l|

μ
or

δ|k−l|

μ

and the non-negative inverse will persist. Here γ , δ and μ are defined in (1) and (2).

Corollary 3. Let M be a strictly diagonally dominant symmetric tridiagonal Toeplitz M-matrix. A general

element (k, l), where k � l + 2 or k � l − 2, can be perturbed by as much as

τ |k−l|

μ

and the non-negative inverse will persist. Here τ = b
a and μ is defined in (2).

5. Perturbations inside the diagonal band

We have now found bounds on the size of a perturbation made to a general element outside of

the tridiagonal band, however, we have not addressed the effects of perturbing an element within the

band. Recall that we are only looking at perturbations to elements in the band that are of a magnitude

large enough to break the sign pattern.

Whenperturbing an elementwithin the band of thematrixM, the resultingmatrix, P = tridiag{−b′
i
,

a′
i
,−c′

i
}, will be a tridiagonal matrix, so from [10] we know there exist vectors u′, v′, x′ and y′ such

that

p−1
ij

=
{
u′
i
v′
j
, i � j,

x′
j
y′
i
, i � j
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and

u′
1 = 1, u′

2 = a′
1

c′
1

, u′
i = a′

i−1
u′
i−1

− b′
i−2

u′
i−2

c′
i−1

for i = 3, . . . ,n,

x′
1 = 1, x′

2 = a′
1

b′
1

, x′
i = a′

i−1
x′
i−1

− c′
i−2

x′
i−2

b′
i−1

for i = 3, . . . ,n,

y′
n = 1

a′
nx

′
n − c′

n−1
x′
n−1

, y′
n−1 = a′

n

b′
n−1

y′
n,

y′
i = a′

i+1
y′
i+1

− c′
i+1

y′
i+2

b′
i

for i = n − 2, . . . , 1,

v′
n = 1

a′
nu

′
n − b′

n−1
u′
n−1

, v′
n−1 = a′

n

c′
n−1

v′
n,

v′
i = a′

i+1
v′
i+1

− b′
i+1

v′
i+2

c′
i

for i = n − 2, . . . , 1.

The elements of M−1 are also defined in an analogous manner, using vectors u, v, x, and y as in (3).

Now, in order for each p−1
ij

to be non-negative, we must have vi � 0 and yi � 0 for all i since

u1 = x1 = 1 and we want u1vi � 0 and x1yi � 0. This then means that ui � 0 and xi � 0 for

all i.

If we wish to perturb element (1, 2) and change its sign then we add a positive quantity, h, so

that −c′
1

= −c1 + h > 0 and c′
1

< 0. However, we still have a1 = a′
1
� 0 so u′

2
= a′

1
c′
1

< 0 and hence the

inverse cannotbeelement-wisenon-negative. Similarlywecannotperturb element (2, 1) andmaintain

inverse non-negativity.

If the elementbeingperturbed is (k, k − 1), k � 2, then−b′
k−1

= −bk−1 + h < 0and sob′
k−1

< 0.Also

a′
k−1

x′
k−1

− c′
k−2

x′
k−2

= ak−1xk−1 − ck−2xk−2 � 0 sincenoother elementswereperturbedandm−1
ij

� 0.

This implies x′
i
< 0 so P−1 cannot be element-wise non-negative. Similarly if element (k, k + 1), k � 2

is being perturbed the inverse cannot be non-negative.

When perturbing an element on the diagonal, (k, k), in order to change the sign pattern we need to

make it negative so we subtract a positive quantity, h. This would imply a′
k

= ak − h < 0, so if 2 � k �
n − 1, then a′

k
x′
k

− c′
k−1

x′
k−1

< 0 since x′
i
and c′

i
are positive for all i � k. This would require x′

k+1
< 0.

Similarly we find if k = 1, x′
2
is negative, and if k = n, y′

n is negative. Therefore, we cannot perturb the

diagonal and still have a non-negative inverse.

This leads to the following theorem.

Theorem 5. If a single element within the band of a tridiagonal M-matrix is perturbed by a large enough

amount to change the element’s sign, then the inverse of the perturbed matrix cannot be element-wise

non-negative.

6. Conclusions

In this paper, we have perturbed a general element of a tridiagonal M-matrix and have found

sufficient upper bounds on the size of this perturbationwhich ensure that the inverse of the perturbed

matrix is non-negative (element-wise). We have discovered when outside the band, the further from

the diagonal we wish to make the perturbation the smaller the perturbation has to be to preserve

inverse non-negativity. These results were consistent with previous findings, cf. [5]. When perturbing

an element inside the diagonal band we found that it is not possible to maintain the non-negative

inverse property without also maintaining the M-matrix sign pattern.
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