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Abstract Determining optimal well placement and con-
trol is essential to maximizing production from an oil

field. Most academic literature to date has treated op-
timal placement and control as two separate problems;
well placement problems, in particular, are often solved

assuming some fixed flow rate or bottom-hole pressure
at injection and production wells. Optimal placement
of wells, however, does depend on the control strategy

being employed. Determining a truly optimal configu-
ration of wells thus requires that the control parameters
be allowed to vary as well. This presents a challenging

optimization problem, since well location and control
parameters have different properties from one another.

In this paper we address the placement and con-
trol optimization problem jointly using approaches that
combine a global search strategy (particle swarm op-

timization, or PSO) with a local generalized pattern
search (GPS) strategy. Using PSO promotes a full, semi-
random exploration of the search space, while GPS al-

lows us to locally optimize parameters in a systematic
way. We focus primarily on two approaches combining
these two algorithms. The first is to hybridize them

into a single algorithm that acts on all variables si-
multaneously, while the second is to apply them se-
quentially to decoupled well placement and well con-

trol problems. We find that although the best method
for a given problem is context-specific, decoupling the
problem may provide benefits over a fully simultaneous

approach.
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1 Introduction

Maximizing production from an oil field is a crucial

task, given the enormous financial investment at stake
in any large-scale field development. Decisions regard-
ing the placement of new wells, and control of injection

and production rates at existing wells, have a significant
impact on production. Poor placement and/or control
of wells may result in premature water breakthrough
at the production wells, or make it difficult to achieve

high flow rates while maintaining reservoir pressure.
The vast number of potential development scenarios
drives the need for efficient, computerized optimization

approaches to assist in making these decisions.

The problems of finding optimal well locations and

determining optimal well control parameters are often
treated separately [11]. Well placement problems in-
volve optimizing over parameters corresponding to the

positions and orientations of the injection and produc-
tion wells. We limit ourselves in this paper to consider-
ing vertical wells, meaning that each well’s position is

parameterized simply by its (x, y) co-ordinates. A sim-
ple control scheme is typically assumed in well place-
ment problems; for instance, injection wells are held at

a fixed bottom hole pressure (BHP), while producers
are held at a lower BHP in order to generate flow. Well
control problems, on the other hand, focus on managing

the injection and production rates at wells that are al-
ready in place. The optimization variables in this case
are usually either the BHP or the flow rate for each

well, which can be changed at specified time intervals.
The objective function that one attempts to maximize
in these problems is typically either the total amount

of oil extracted, or the net present value (NPV) of the
extracted oil. The NPV function is correlated with the
total amount of oil extracted, but emphasizes produc-

ing more oil early in the reservoir’s lifetime (due to the
time value of money), and also typically includes the
costs of water injection and disposal of any water pro-

duced. Heterogeneous properties of the reservoir, such
as the permeability field, have a significant impact on
optimal well placement; as a result, the objective func-

tion surface tends to be much rougher in well place-
ment problems than in well control problems. This dif-
ference in the objective function surface typically leads

to the use of different optimization approaches to ad-
dress these two problems. Optimization studies on well
placement have often focused on global algorithms with

some stochastic element in order to avoid converging
prematurely to local optima; well control problems have
tended to make use of deterministic algorithms, based

on local search techniques [11].
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A unified approach to optimizing well placement

and well control jointly has the potential to provide
benefits over the treatment of these problems separately.
In particular, the best well configuration when produc-

ers are held at some fixed BHP is not necessarily the
same as the best configuration if the control can vary
with time [39]. Additionally, determining the optimal

placement of new wells may also require adjusting the
control parameters at wells already in place. The prob-
lem of jointly optimizing well placement and control

has been largely unexplored in the literature until re-
cently. Here, we investigate approaches to addressing
this problem using a two optimization algorithms: par-

ticle swarm optimization (PSO) and generalized pat-
tern search (GPS). These approaches include hybridiz-
ing the algorithms to simultaneously optimize over both

placement and control parameters, as well as applying
them in sequential steps in a decoupled approach to the
problem.

2 Existing research

Well placement studies have tended to use stochastic

optimization approaches aimed at exploring the solu-
tion space globally. Genetic algorithms (GAs) have re-
ceived the widest use [1, 5, 8, 12, 15, 25, 29, 37]. Other

optimization algorithms that have been applied to the
problem include simultaneous perturbation stochastic
approximation (SPSA) [3], covariance matrix adapta-

tion [6], and particle swarm optimization (PSO) [27,28].
In addition to studying suitable algorithms for the op-
timization problem, well placement papers have dis-

cussed other issues such as parametrization and opti-
mal placement of nonconventional wells [8, 37], consid-
eration of geological uncertainty when determining op-

timal positions [1,15], placement of well patterns rather
than individual wells [28,29], and inclusion of nonlinear
constraints as part of the optimization [12,39].

A popular optimization algorithm for well control

problems, on the other hand, has been the adjoint me-
thod [7, 13, 19, 31, 38]. This method, which is based
on approximating the gradient of the objective func-

tion, is well-suited to the optimal control problem due
to the objective function’s smoothly varying nature.
Implementing the adjoint method may be challenging,

however, since it requires in-depth knowledge of the
workings of the reservoir simulator. An alternative is
to use “black box” optimization algorithms, which op-

timize based only on the output from simulator. Ex-
amples of black-box algorithms that have been applied
to the well control problem include stochastic methods

like SPSA [35] and GAs [36], as well as deterministic

methods such as generalized pattern search (GPS) and

Hooke-Jeeves directed search [10,11].
Some recent papers have considered optimization of

well placement and well control in a more unified man-

ner. One proposed approach [14] essentially treats the
problem as one of optimizing well control rates, with
a large number of injection and production wells be-

ing placed in the reservoir initially. As the optimization
proceeds, flow rates at some wells are driven to zero,
resulting in their removal from the simulation. Thus,

the procedure determines the optimal number of injec-
tors and producers, as well as their locations and opti-
mal flow rates. This approach uses a modified version

of the adjoint method, which incorporates a number of
inequality and equality constraints to allow for the re-
moval of wells after every iteration. A second approach
uses a combination of GPS and adjoint methods in a

nested optimization procedure [4]. The outer iteration
of this procedure consists of using GPS to determine
optimal well positions; for each configuration of wells,

an inner optimization routine uses the adjoint method
to determine the best control strategy. The SPSA algo-
rithm has also been applied to problems involving both

well placement and well control in [22,23], where it was
found that optimizing over all variables simultaneously
was preferable to applying SPSA sequentially to sub-

problems involving placement or control only.
The use of PSO and GPS in tandem to address the

well placement and control problem has also been in-

vestigated in [18]. There it was found that hybridizing
PSO and GPS provided better results than the inde-
pendent application of those algorithms, and that opti-

mizing over all variables simultaneously was preferable
to sequential optimizations. The approach we use in
this paper is similar to theirs, but in preliminary ex-

periments presented in [17], we found that sequential
optimization was sometimes preferable to a fully simul-
taneous approach. In this paper we refine the technique

and perform further experiments, to determine under
which circumstances one approach may be preferable
to the other.

3 Optimization approach

Combining global and local optimization techniques should
be advantageous when addressing well control and well

placement simultaneously. We use PSO as a global op-
timizer in this study, and GPS for the local search. Our
choice of these algorithms is motivated by the fact that

both have performed well in previous production opti-
mization studies [10, 27]; both are black-box methods
that do not require in-depth knowledge of the simula-

tor; and both are easily parallelized to help mitigate
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the high cost of function evaluations. We now give an

overview of PSO and GPS, as well as of the specific
optimization approaches used in this paper.

3.1 Particle swarm optimization

Particle swarm optimization [9, 20] is an optimization
algorithm based on modeling the behaviour of a group

of animals acting collectively. PSO utilizes a number of
particles (typically 20 to 40) to explore solution space
in a semi-random way. The position of particle i at it-

eration k, denoted x
(k)
i , is a vector of size N , where N

is the number of variables in the optimization problem.
Every position in solution space is associated with the

corresponding objective function value, and every par-
ticle remembers the best position it has found so far.
Particles in the swarm also communicate with one an-

other to share the best positions that have been found
overall. Each iteration of PSO consists of determining a
new position for every particle in the swarm, and then

evaluating the objective function at that position. Since
the objective function evaluations can be performed in-
dependently of one another, the algorithm is highly par-
allelizable.

Given x
(k)
i , the position of the particle at iteration

k + 1 is:

x
(k+1)
i = x

(k)
i + v

(k+1)
i ,

where the particle’s velocity vector v
(k+1)
i is given by

v
(k+1)
i = ιv

(k)
i + µr

(k)
1 ⊗

(
p
(k)
i − x

(k)
i

)
+

νr
(k)
2 ⊗

(
g
(k)
i − x

(k)
i

)
.

The velocity is a combination of three terms. The
first term models the tendency of the particle to con-

tinue traveling in the direction given by its current ve-
locity. The second term represents the tendency of the
particle to move toward the best position it has found so

far, denoted by p
(k)
i . Finally, the third term represents

the tendency of the particle to move toward the best
position found by any other particle with which it com-

municates, denoted by g
(k)
i . The constants ι, µ and ν

are parameters whose values are chosen to weight these
three terms appropriately. To inject randomness into

the particle movement, the N -vectors r
(k)
1 and r

(k)
2 are

generated from the uniform distribution on (0, 1) at ev-
ery iteration, then multiplied componentwise with the

terms in brackets by the ⊗ operator. The algorithm it-
erates until some convergence criterion is met; for exam-
ple, until the velocities of the particles have become suf-

ficiently small, until the particles are sufficiently close

to one another, or simply until some maximum number

of iterations have been performed.

If every particle communicates with every other par-
ticle in the swarm, PSO may quickly converge to a lo-
cal optimum before the solution space is fully explored.

Thus, it is usually recommended that each particle com-
municate only with two to four other particles at any
one time [9]. At every iteration of the algorithm, the

neighbourhood of particles with which each particle
communicates can be chosen randomly. This random
neighbourhood topology was used for this study, as well

as a swarm size of 40 particles, and parameter values of
ι = 0.721, and µ = ν = 1.193. These parameter values
have been found to provide good convergence results

in many numerical experiments [9]. It should be noted
that in general, one can not guarantee that PSO con-
verges to a global or even a local optimum; however, in

practice it has proved to be effective for a wide variety
of optimization problems.

3.2 Generalized Pattern Search

Generalized Pattern Search [2,21] is an optimization al-
gorithm that begins from a single incumbent point and
consists of a series of search and poll steps. At every

iteration k, a discrete mesh, centred at the current in-
cumbent x(k), is defined by:

M (k) =
{
x(k) +∆(k)Dz : z ∈ NnD

}
,

where ∆(k) is the resolution of the mesh at iteration
k, D is a matrix whose columns form the search direc-

tions, N is the set of natural numbers, and nD is the
number of search directions. The search directions must
form a positive spanning set in solution space; i.e., one

must be able to specify any point in solution space by
adding together only positive scalar multiples of these
directions. A common choice of search directions is:

D = {e1, e2, . . . , eN ,−e1,−e2, . . . ,−eN} (1)

where the en are the canonical basis vectors (1, 0, 0, . . . , 0)T ,

(0, 1, 0, . . . , 0)T , etc. Here D refers to the set of search
directions, which form the columns of the matrix D.

The search step consists of selecting a finite number
of points on M (k) and evaluating the objective func-

tion at each one. If any of those points improves the
objective function value, the point with the best value
becomes the new incumbent. The search step can em-

ploy any strategy in selecting points, and may even be
omitted, if desired. If none of the points selected in
the search step are better than the incumbent, then

the algorithm proceeds to the poll step. The poll step
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consists of evaluating the objective function at all the

points that are immediate neighbours of the incumbent
point on the mesh M (k). These points are given by:{
y
(k)
j

}
=

{
x(k) +∆(k)dj | ∀ dj ∈ D

}
.

If the poll step finds one or more points with a bet-
ter objective function value than the incumbent, then
the point with the best value becomes the new incum-

bent. Optionally, ∆(k) may be increased for the next
iteration. If the poll step is unsuccessful, then ∆(k) is
reduced and another iteration begins, using the same in-

cumbent point as before. The algorithm is considered to
have converged once ∆(k) is reduced beyond a specified
threshold, which indicates that the current point is at

least close to a local optimum. In fact, provided that the
objective function is continuously differentiable, GPS is
guaranteed to converge to a local optimum, at least to

mesh precision [21]. Like PSO, GPS is highly paralleliz-
able because the function evaluations required by the
search and poll steps can be performed independently

of one another.

3.3 Handling of bound and general constraints

Broadly speaking, there can exist two types of con-
straints on the optimization vector x: bound and general

constraints. Bound constraints are simple component-
wise inequality constraints of the form

xl ≤ x ≤ xu,

where xl and xu are the lower and upper bounds on x,

respectively. In the context of a reservoir optimization
problem, these could be the minimum and maximum
grid indices (for well placement) or upper and lower

limits on the control parameters.
Both PSO and GPS can easily incorporate bound

constraints. In PSO, any particles that travel outside

of the bounds are projected back onto the boundary of
search space. For instance, if component d of particle
i’s position exceeds the maximum value xu

d after being

updated, then the particle’s position and velocity are
modified as follows:

xi,d = xu
d , vi,d = 0

The velocity component is set to zero to ensure that the

particle does not continue to travel in the direction that
led it out of bounds. Bound constraints are treated sim-
ilarly in GPS; namely, points which lie outside of search

space are projected back onto the boundary during the
poll step [21].

General constraints refer to any constraints on the

input parameters other than simple bound constraints.

Input that violates general constraints (which we refer

to as infeasible input) can sometimes be identified prior
to evaluating the objective function; for instance, if the
input specifies placing two wells at the same location.

Other constraints, such as an upper limit on well flow
rates for wells being driven by BHP, require running the
reservoir simulator to determine if they are satisfied.

A simple mechanism for PSO to handle general con-

straints is to allow particles to move to infeasible po-
sitions, but not store these positions in the particle’s
memory [16]. Thus, particles can explore search space

freely, but are only attracted to positions that are fea-
sible, in addition to providing good objective function
values. This strategy requires that every particle be ini-

tialized to a feasible position, so that the particle always
has at least one feasible position stored in its history. To
handle general constraints in GPS, one can simply ig-

nore any infeasible points during polling, and thus only
accept feasible points which also reduce the objective
function value. This approach is not ideal for general-

purpose optimization, as it may prevent the algorithm
from traveling through the infeasible region to find the
true optimum; alternative approaches such as filtering

are recommended instead [2,10]. We found that the first
approach was sufficient for this study, however, possi-
bly because GPS was used in conjunction with PSO,

rather than as a stand-alone optimizer.

3.4 Hybrid algorithm

An optimization algorithm that hybridizes PSO and
GPS has previously been proposed in [33, 34]. This al-
gorithm, denoted PSwarm, is essentially a GPS algo-

rithm that uses PSO as the search step. Thus, the algo-
rithm behaves exactly like PSO for as long as the search
step continues to find points that improve the objec-

tive function value. When this step fails to improve the
solution, polling takes place around the current best
position found. If the poll step finds a better solution,

the current best position is updated and a new itera-
tion of PSO begins; otherwise, the polling stencil size is
reduced. The algorithm proceeds until the convergence

criteria for both PSO and GPS are met; i.e., the veloc-
ity of the particles is sufficiently small, and the polling
stencil size is reduced beyond a specified threshold.

In this paper we have made the following modifica-

tions to PSwarm in order to adapt it to the simultane-
ous well placement and control problem:

1. We have extended the PSO and GPS components of
the algorithm to handle general constraints, as de-
scribed in the previous section. The PSwarm algo-

rithm as described in [33] handles linear constraints,
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but not general constraints of the type seen in this

problem.
2. We have replaced the global communication topol-

ogy used by the search step of PSwarm with the ran-

dom variable neighbourhood topology. Each parti-
cle’s communication neighbourhood consists of itself
and two other particles, which are selected randomly

at each iteration.
3. We have chosen to skew the sampling of control pa-

rameters when initializing the swarm. PSO is typi-

cally initialized by assigning a position sampled uni-
formly within the search space to each particle in the
swarm. In the context of this problem, however, we

can be reasonably certain that for production wells,
BHP values towards the low end of the range will
tend to increase oil production, while BHP values

towards the high end of the range will do the same
for injection wells. We take advantage of this a pri-
ori knowledge in order to accelerate the convergence
of the algorithm.

4. We have investigated the effect of allowing the search
step (PSO) to fail several times consecutively be-
fore a poll step is performed. As a result of the

high cost of function evaluations in our problem, the
poll step is more computationally expensive than in
many other optimization problems. Performing the

poll step less frequently may allow us to reduce the
computational cost of the algorithm.

5. We have investigated the use of specifically selected

direction vectors D to use during the poll step. The
standard GPS search directions (Eq. (1)) are fairly
incremental, particularly with respect to control pa-

rameters, since each variable corresponds only to the
BHP value at a single well for a single time interval.
We may be able to achieve a larger improvement in

a single step by choosing search directions that raise
or lower BHP in multiple years. The specific choice
of search directions is discussed in the next section.

4 Experiments

We now describe several experiments that were used

to test the performance of the different optimization
approaches. All experiments were performed using the
Matlab Reservoir Simulation Toolbox (MRST) [24, 32]

as the reservoir simulator. MRST is an open-source sim-
ulator implemented in Matlab, which includes routines
for processing and visualizing unstructured grids, as

well as several solvers for single and two-phase flow.
The flow and transport equations are solved in alter-
nating steps in order to determine the phase pressures,

flow rates and saturations at every time point. Model-

Table 1 Economic parameters used in all experiments.

Parameter Value

co $80/bbl
cw,disp $12/bbl
cw,inj $8/bbl

r 10% or 0%
Max water cut 78%

ing of simple vertical and horizontal wells is provided
using the Peaceman model [30].

The objective function we used in these experiments
was the net present value (NPV) over the entire pro-

duction period [0, T ]. The NPV was computed as in [3],
with

NPV (x) =

∫ T

0

{ ∑
n∈prod

[
coq

−
n,o(t)− cw,dispq

−
n,w(t)

]
−

∑
n∈inj

cw,injq
+
n,w(t)

}
(1 + r)−t dt.

(2)

The parameters co, cw,disp and cw,inj represent the price

per barrel of produced oil, disposal cost per barrel of
produced water, and cost per barrel of injected water,
respectively. The functions q−n,o(t) and q−n,w(t) are the

production rates (barrels/day) of oil and water, respec-
tively, at well n, while q+n,w(t) is the water injection rate
at well n. These rates are implicitly functions of the op-

timization vector x, since they depend on the well posi-
tions and prescribed BHPs. The yearly interest rate is
specified by r. We used the parameter values provided

in Table 1 for all experiments. This choice of values
meant that production became unprofitable once the
water cut at a well reached roughly 78%. This thresh-

old value is often as high as 90 or 95% in practice; we
chose a lower value to ensure that shutting in a well
was the optimal choice in some experiments.

Experiment 1

The first experiment used a simple 2D reservoir model,

consisting of 50×60 grid cells measuring 32×32×10 m
(total field size: 1600×1920×10m). The permeability
and porosity fields (Fig. 1) were taken from the third

layer of the SPE10 Benchmark model. The reservoir was
initially saturated uniformly with an 80/20 mix of oil to
water. The optimization problem was to place two in-

jection and two production wells in the reservoir, all of
which were subject to control via BHP. The production
period was 10 years, and the BHP at each well could

be altered every 2 years. Thus, there were 28 variables
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Fig. 1 Permeability and porosity fields used in first experi-
ment. Permeability values are shown on a logarithmic scale.

Table 2 Parameters (top) and constraints (bottom) used in
Experiment 1.

Parameter Value

Grid cell dimensions 32 × 32 × 10 m
Fluid viscosities µo and µw 2.4 and 1.0 cp
Fluid densities ρo and ρw 835 and 1000 kg/m3

Initial reservoir pressure 260 bars
Injector BHP range 275–450 bars

Producer BHP range 100–250 bars
Production period 10 years

Control interval 2 years

Maximum water injection rate 1000 m3/day
Maximum fluid production rate 1000 m3/day

Minimum distance between wells 250 m

being considered in total (2 positional variables and 5
control variables per well). The experimental parame-
ters are summarized in Table 2.

We considered three variations of the optimizationl
problem:

– Case 1A: no constraints on injection and production
rates; discounting rate r of 10%.

– Case 1B: no constraints on injection and production
rates; no discounting.

– Case 1C: maximum flow constraints on the injection
and liquid production rates as described in Table 2;

discounting rate r of 10%.

The goal of considering these three subproblems was
to see how the different conditions affected the optimal
solutions to the problem, as well as the effectiveness

of different optimization approaches. Three main op-
timization approaches were applied to each problem.
The fact that every optimization approach that we con-

sidered included a stochastic component necessitated
performing multiple runs of each approach, in order
to assess the average performance. Each approach was,

therefore, applied 20 times to the appropriate problems.
The first approach was to apply PSO to the vector

of all decision variables (well locations and control pa-

rameters) simultaneously. PSO was run for up to 250
iterations, or until the average velocity of the particle
swarm decreased below a certain threshold. We subse-

quently used GPS to poll repeatedly around the best

solution found by each run of PSO, in order to see if

it could be improved further. This second step was not
considered to be part of the optimization approach, but
rather as a test to see how close the solutions found by

PSO were to being locally optimal.
The second approach was to apply 200 iterations of

the hybrid algorithm described in the previous section.

The following three variants of the hybrid algorithm
were applied:

– hybrid-1: Polling was performed every time the
PSO step failed to improve the solution. We used
the standard search directions (Eq. (1)).

– hybrid-5: Polling was performed only after PSO
failed five times consecutively. We used the standard
search directions.

– hybrid-5S: Polling was performed only after PSO
failed five times consecutively. We used special search
directions.

The special search directions used by the hybrid-5S

approach for this problem are illustrated in Fig. 2. Ev-
ery row of the matrix shown corresponds to one of the
28 variables, and every column represents one search

direction. Consider the first 14 directions shown, which
act on the first seven variables only. These variables
correspond to the two positional parameters (x and y

co-ordinates) and five control parameters for the first
injector. The key difference from the standard search
directions is that we allow the BHP of the injector to

be raised for more than one time period simultaneously.
The BHP of the injector can only be lowered, however,
for one time period at a time. The rationale is that

raising the BHP in an injector increases flow, and is
thus more likely to raise oil production than lowering
the BHP. For producers, the opposite is true, and so in

that case we allow the BHP to be lowered for multiple
time periods simultaneously.

In all the hybrid approaches, we scaled the direc-

tions corresponding to positional parameters indepen-
dently of the control variables, so that the x or y co-
ordinates of a well were only ever perturbed by one grid

space during polling. The idea is that the optimization
of the well positions is primarily achieved by the PSO
step. Well positions should only need to be perturbed

slightly during the poll step, which is aimed mainly at
optimizing the controls.

The third approach we considered was to decouple

the placement and control components of the problem.
The first step of this approach consisted of treating the
problem strictly as a well placement problem, by as-

suming that the producers were held at some fixed BHP
throughout the production period. We used up to 200
iterations of PSO to determine the optimal well po-

sitions under this assumption. Once optimal positions
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Fig. 2 Specialized search directions used by the hybrid-5S

approach for Experiment 1. A red entry corresponds to a
value of -1, and a black entry to +1. Dashed horizontal lines
separate variables corresponding to each of the the four wells.

were found, we allowed the controls to vary, and opti-

mized the control using GPS with standard search di-
rections. The positions could also be incrementally ad-
justed in this second step. This second step ensured that

the solutions found by the decoupled approach were lo-
cally optimal. The advantage of the decoupled approach
is that it splits the problem into two smaller problems

which are easier to solve than the full problem. A po-
tential disadvantage is that we may find suboptimal so-
lutions by not optimizing over all variables at the same

time.

The decoupled approach requires defining fixed BHP
values to assign to the injection and production wells

during the first (well placement) phase of the approach.
Our default choice was to use the maximum BHP value
(450 bars) for injectors, and the minimum BHP value

(100 bars) for producers. For Case 1C, where there were
maximum constraints on the injection and production
rates, we also tried a second variant where a BHP value

of 425 bars was used for injectors, and 125 bars for pro-
ducers. The rationale for this modification, which we
denote by decoupled-M, is that using the maximum

and minimum BHP values when placing wells will pro-
duce the highest flow rates possible for a given configu-
ration as wells. If these flow rates exceed the maximum

flow constraint, then these configurations will be con-
sidered as infeasible during the first stage of optimiza-
tion, even if they could be made feasible by adjusting

the BHP values. The net effect is that the well positions
found in the first phase may tend to place wells farther
apart than necessary, or in regions of lower permeabil-

ity, in order to satisfy the flow constraints. Thus, by
choosing BHP values that are slightly below or above
the maximum and minimum values, respectively, we

may be able to find better well positions.

Fig. 3 Left side: reservoir geometry of the Ile formation from
the Norne field. Log of permeability (mD) in the x − y di-
rections is shown. Right side: Projection of invalid vertical
well locations in the (x, y) plane onto the nearest valid co-
ordinates.

Experiment 2

The second experiment used a reservoir model provided
by the Norwegian University of Science and Technol-
ogy (NTNU) as part of the Norne benchmark case [26].

The full model of the Norne field is a 46×112×22 grid
consisting of 44,927 active cells. The reservoir model is
subdivided into four different formations from top to

base, denoted Garn, Ile, Tofte and Tilje. In order to
reduce simulation time, we extracted the seven layers
corresponding to the Ile formation to provide a smaller
reservoir model, consisting of 15,004 active cells. The

porosity of the reservoir ranged between 25–30% and
the permeability from 20 to 2500 mD. The reservoir
geometry is shown in Fig. 3 (left image). The initial

saturation was assumed to be 80% oil and 20% water,
as in Experiment 1.

The reservoir’s irregular shape meant that wells whose

positional co-ordinates fell within the bounds prescribed
by the grid might not correspond to valid locations in
the reservoir. Thus, any positional co-ordinates in the

(x, y) plane which did not correspond to a valid reser-
voir location were projected onto the nearest active cell
during the optimization. This process is illustrated in

Fig. 3 (right image). Black cells indicate grid locations
which pass through at least one active cell in the z-
direction. The three red × symbols indicate positions

that are invalid, which were projected onto the nearest
valid location (indicated by the green × symbols).

The goal of Experiment 2 was to test the optimiza-

tion approaches on a more complex simulation with a
larger number of variables. The experiment consisted
of placing eleven wells (four injectors, seven producers)

in this field, and optimizing production over a 15-year
time period. The experimental parameters are summa-
rized in Table 3. As in Experiment 1, there were 2 posi-

tional and 5 control parameters associated with each
well, meaning that there were 77 variables in total.
The same economic parameters were used as in Ex-

periment 1 (see Table 1). For this experiment, only two
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Table 3 Parameters (top) and constraints (bottom) used in
Experiment 2.

Parameter Value

Fluid viscosities µo and µw 2.4 and 1.0 cp
Fluid densities ρo and ρw 835 and 1000 kg/m3

Initial reservoir pressure 340 bars
Injector BHP range 350–500 bars

Producer BHP range 150–325 bars
Production period 15 years

Control interval 3 years

Maximum water injection rate 5000 m3/day
Maximum fluid production rate 3000 m3/day

cases were considered; Case 2A, where there were no
constraints on production, and Case 2B, which used
the constraints given at the bottom of Table 3. A dis-

counting rate of 10% was used for both cases.

Based on the results of Experiment 1, we limited

the number of optimization approaches that we inves-
tigated to the two that were found to be most effective:
hybrid-5S, and one of the two decoupled approaches.

For Case 2A, we used the decoupled approach, where
the well BHPs were held at their maximum and min-
imum values; for Case 2B, we used the decoupled-M

modification with injectors held at a BHP of 450 bars
and producers held at 200 bars. We performed only five
runs of each optimization approach, due to the high

computational cost of this experiment. The hybrid al-
gorithm was run for up to 300 iterations per run, while
the decoupled approach involved up to 250 iterations

of PSO during the well placement phase, followed by
running GPS until convergence.

5 Results

The results of both experiments are shown in Table 4.

The section entitled “NPV” shows the average, best
and worst NPV values over the multiple runs of each
approach that were performed for each test case (twenty

runs for Experiment 1, and five runs for Experiment 2).
The section entitled “reliability” quantifies the relia-
bility of each approach, by indicating how often the

solutions found were within 10% and 5% of the best
solution found overall. A reliability value of 0.55 in
the 10% column, for instance, indicates that 11 out of

the 20 solutions found by that method had an NPV
within 10% of the best overall. The section entitled
“after GPS” shows the average NPV after the GPS al-

gorithm was applied to each solution found by PSO
and the hybrid algorithm, as well as the percentage
improvement (∆%) compared to the original average.

These values indicate how close, on average, the so-

lutions found by each algorithm were to being locally

optimal. These values were not calculated for any of
the decoupled approaches, since the solutions found by
those approaches were guaranteed to be locally opti-

mal. Plots of the mean convergence of the respective
algorithms versus the number of function evaluations
(fevals) for both experiments are shown in Fig. 4.

6 Discussion

Experiment 1

Some general observations can be drawn from the re-

sults shown in Table 4. First, the decoupled approach
was more reliable than the simultaneous approaches
(i.e. the PSO and hybrid algorithms). In all three test

cases, every solution found by the decoupled method
was within 10% of the best overall; the hybrid approaches
typically scored between 0.8 and 0.95, and PSO’s reli-

ability was as low as 0.55 in two out of the three test
cases. The decoupled approach also gave the most re-
sults within 5% of the best overall for test cases 1B and

1C. On average, the NPV of solutions found by the de-
coupled approach was better than the other methods
for Cases 1B and 1C.

This result indicates that reducing the size of the
problem by focusing on well placement first, while as-

suming that wells are held at or near the extreme BHP
values, may help to ensure that one obtains a “good” so-
lution. The reason may be that this approach allows us

to explore a number of well placement possibilities while
holding the controls at a configuration that is generally
likely to result in higher production. In the simultane-

ous approaches, good well positions may be missed by
the algorithm if the well controls are poorly configured.
It is worth noting, however, that for Case 1A, the de-

coupled approach had the poorest performance of any
of the methods, in terms of the best solution found.

Applying standard PSO to the problem gave the

worst results of any of the methods; it had by far the
lowest reliability ratings and average NPV for Cases 1A
and 1C. For Case 1B, its performance was comparable

to that of the hybrid approaches, but worse than the
decoupled approach. This would seem to indicate that a
purely stochastic approach is insufficient in addressing

the combined well placement and well control problem.
The “After GPS” column of Table 4 indicates that the
solutions found by PSO were usually not even locally

optimal and could be improved significantly (from be-
tween 2 to 5%, on average) by applying GPS subse-
quently. The solutions found by the hybrid algorithms,

on the other hand, tended to be close to locally op-
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Table 4 Results of first and second experiments. The best results for each experiment are highlighted in bold font. Columns
headed “Field”, “Constr.” and “Discount.” are included to differentiate the experiments with respect to the field used, presence
or absence of maximum constraints on flow, and discounting rate used to calculate NPV. The constraints for Cases 1C and
2B are described in Tables 2 and 3, respectively.

NPV Reliability After GPS
Case Field Constr. Discount. Algorithm Avg. Best Worst 10% 5% Avg. ∆%

($×108) ($×108) ($×108) ($×108)

PSO 5.93 6.38 5.55 0.55 0.20 6.19 4.45
hybrid-1 6.17 6.51 5.77 0.90 0.50 6.18 0.07

1A SPE10 no 10% hybrid-5 6.15 6.44 5.76 0.85 0.50 6.18 0.56
hybrid-5S 6.12 6.46 5.79 0.85 0.30 6.15 0.40
decoupled 6.15 6.30 5.97 1.00 0.20 — —

PSO 8.18 8.57 7.50 0.90 0.50 8.35 2.22
hybrid-1 8.23 8.63 7.49 0.80 0.60 8.25 0.21

1B SPE10 no 0% hybrid-5 8.15 8.59 7.69 0.90 0.45 8.20 0.56
hybrid-5S 8.23 8.59 7.66 0.95 0.60 8.25 0.27
decoupled 8.35 8.64 8.04 1.00 0.65 — —

PSO 5.58 6.06 5.05 0.50 0.15 5.87 5.41
hybrid-1 5.74 6.02 5.35 0.85 0.25 5.75 0.11
hybrid-5 5.73 6.00 5.51 0.95 0.25 5.76 0.45

1C SPE10 yes 10% hybrid-5S 5.78 6.15 5.44 0.80 0.35 5.88 1.70
decoupled 5.89 6.05 5.63 1.00 0.50 — —
decoupled-M 5.99 6.14 5.80 1.00 0.80 — —

2A Norne no 10% hybrid-5S 112 117 109 1.00 0.40 113 0.22
decoupled 113 117 110 1.00 0.80 — —

2B Norne yes 10% hybrid-5S 97.2 98.4 95.9 0.00 0.00 97.6 0.35
decoupled-M 106 112 102 1.00 0.60 — —

tima,l and were typically only improved slightly by this
subsequent application of GPS.

Case 1C was the only test case of Experiment 1
to feature constraints on the injection and production
rates. In this case we found that the decoupled-M ap-

proach outperformed the decoupled approach in every
measure of performance. This would seem to validate
our hypothesis that for constrained problems, choosing

BHP values that are slightly below or above the maxi-
mum and minimum values when placing wells is prefer-
able to using the maximum and minimum values during

the well placement phase. The convergence plot (Fig. 4,
rightmost plot) shows that the NPVs of the solutions
found by decoupled-M are much lower than those found

by decoupled during the well placement phase. During
the control optimization phase, however, the GPS algo-
rithm was able to significantly improve the solutions, to

the point that they surpass those found by decoupled.
Examining the best solutions found by either approach
for this test case indicated that the placement of wells

was similar, but that the decoupled-M approach was
able to place wells in regions of higher permeability,
which improved production by reaching the maximum

flow rate more quickly. This placement of wells was not

found by the decoupled approach since it caused a con-

straint violation when BHPs were held fixed at the ex-
treme values.

In terms of the solutions found by each method,

the three variants of the hybrid approach (hybrid-1,
hybrid-5 and hybrid-5S) were fairly comparable. Across
the three test cases, none of the three were markedly

more reliable or provided better NPVs, on average.
The convergence plots shown in Fig. 4 do indicate that
generally speaking, hybrid-1 required more function

evaluations to arrive at a comparable solution to the
other two approaches. This indicates that the increased
polling frequency of this method increased the com-

putational cost of the method without significantly im-
proving its performance. Between hybrid-5 and hybrid-5S,
we observed the greatest difference in Case 1C, where

the hybrid-5Smethod tended to converge more rapidly.
This method also had somewhat better performance for
Case 1B, while the performance of these two approaches

for Case 1A was essentially the same. We conclude that
allowing the pattern search to raise or lower BHPs over
multiple years at a time did accelerate the convergence

of the algorithm to some degree.
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Fig. 4 Plots showing the convergence of different optimization approaches for the three problems of Experiment 1 and the
two problems considered in Experiment 2. The best NPV found is shown as a function of the number of reservoir simulations
(fevals), averaged over all runs for each approach. Note that the scale of the y-axis differs between plots.

Case 1A (no constraint, r = 10%)
Best NPV = $6.51×108

Fig. 5 Best solution found for Case 1A. The top left plot
shows positions of the four wells overlaid on the log-perm
field, with ◦ denoting a producer, and × denoting an injec-
tor. The two plots on the bottom show the control parameters
(BHPs) for injectors and producers. The production curves
for the two producers are shown in the top right plot, with
solid lines indicating oil production and dashed lines indicat-
ing water production.

Case 1B (no constraint, r = 0%)
Best NPV = $8.64×108

Fig. 6 Best solution found for Case 1B. Symbols used are the
same as for Fig. 5.

The best solutions found overall for each test case
are shown in Figures 5 to 7. Qualitatively, we can see

that while the best solutions found for Cases 1B and 1C
are fairly similar to one another, the best solution found
for Case 1A is quite different. In Case 1A, since there

is cash discounting of 10% and no limit on flow rate,
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Case 1C (Max flow 1000 m3/day, r = 10%)

Best NPV = $6.15×108

Fig. 7 Best solution found for Case 1C. Symbols used are
the same as for Fig. 5.

there is a heavy incentive to produce large amounts
of oil quickly. Furthermore, increased water production

in later years is not strongly penalized. We therefore
obtain an optimal solution in which wells are placed
more closely together than in the other two cases, and

where water production rates are quite high at later
production times. We note as well that the BHP in one
of the injectors is lowered to the minimum level after 2

years and held there for much of the production cycle.
This occurs because the water front from this injector
arrives at the two producers quickly, and so the BHP is

subsequently lowered to allow the front from the other
injector to arrive before the producers are flooded. One
producer is eventually shut in after only 8 years, once

the water cut reaches the 78% threshhold.

Since Case 1B does not include any cash discount-
ing, the objective is now to maximize the total amount
of oil produced over the time period of 10 years, while

minimizing the amount of water produced. As a result,
the injectors are placed farther away from the produc-
ers, and the production rates are slower and steadier

than in Case 1A. The optimal controls in this case are
essentially to hold the injector and producer BHPs at
their maximum and minimum values, respectively.

For Case 1C, the positioning of the wells is simi-
lar, although the first injector is placed in a region of

somewhat higher permeability. This allows for a slightly
higher overall initial production rate, which is impor-
tant since Case 1C includes discounting. Since there

is an upper limit of 1000 m3/day on the flow rate at
each well, the BHP at the first injector must be eventu-
ally lowered in order to maintain a flow rate below the

maximum. The flow constraint is also why the wells are

placed farther apart than they are in Case 1A. Although

both Cases 1A and 1C have the same discounting rate,
the flow constraint means that we cannot produce as
much oil early on in Case 1C compared to Case 1A.

Therefore it is advantageous to place the wells farther
apart to delay water production.

The differences between these solutions give some
insight into the relative performances of our optimiza-
tion approaches. For Case 1A, we found that although

it was more reliable, the decoupled approach was not
able to find solutions that were as good as the best ones
found by the hybrid and PSO algorithms. This may be

attributable to the fact that the optimal solutions for
this test case typically involved placing the wells close
together and in regions of high permeability, which re-

quired varying the BHPs of injectors and producers in
order to prevent premature water flooding. Thus, the
positions found during the placement phase of the de-

coupled algorithm, which assumes that wells are held at
the extreme BHP values during the entire production
period, were not the best positions for this particular

problem. In Cases 1B and 1C, where the optimal solu-
tions did not require varying the control parameters to
such a great degree, the performance of the decoupled

approach was better.

Experiment 2

The results presented in Table 4 indicate that for the

unconstrained problem (Case 2A), the performance of
the hybrid-5S and decoupled algorithms was compa-
rable in terms of the solutions to which they converged.

The decoupled algorithm did score slightly better in
terms of reliability, however, and the convergence plot
for this test case (Fig. 4) indicates that its convergence

was quicker as well. The overall best solution found is
shown in Fig. 8. We see again that when a discounting
rate of 10% is imposed and there are no constraints on

production, the best solution favours producing large
amounts of oil early on, at the cost of increased water
production in later years.

The results for Case 2B, which featured a maxi-

mum flow constraint of 5000 m3/day on the four injec-
tors and 3000 m3/day on the seven producers, clearly
indicate that the decoupled-M approach used for this

test case outperformed the hybrid-5S algorithm. The
convergence plot for this test case indicates that dur-
ing the well placement phase of the decoupled-M al-

gorithm, its performance lags slightly behind that of
hybrid-5S, because the BHP values for injectors and
producers are held fixed at 450 and 200 bars, respec-

tively. The hybrid-5S algorithm is able to explore the
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full range of BHP values. During the control optimiza-

tion phase, however, the decoupled-M algorithm is able
to explore the full range of BHP values as well, and
finds significantly better solutions than those found by

hybrid-5S.
The overall best solution found for Case 2B is shown

in Fig. 9. In this case, the incentive to produce more oil

early on is counterbalanced by the fact that one can
only produce a certain amount of oil per day, due to
the maximum flow contraints. Thus we see that in the

best solution for Case 2B, the producers tend to be
placed farther away from injectors than in the best so-
lution for Case 2A. It is also apparent that the optimal

control scheme in this case involves holding injectors
fairly close to the maximum BHP value, and producers
close to the minimum BHP value. This indicates why

the decoupled-M approach was more successful than
hybrid-5S for this test case; since the optimal control
scheme is fairly simple, maximizing production for this
test case is driven primarily by finding good well lo-

cations. Thus, the decoupled-M approach benefits by
reducing the size of the problem initially (from 77 to
22 variables) and focusing on well placement. For Case

2A, we see that the optimal solution involves raising the
BHP at several producers to values more towards the
middle and even upper values of the permitted range.

Thus, well control plays more of an impact in this test
case, and the benefit that the decoupled approach gains
by focusing on well placement is offset somewhat by the

fact that the best solutions may not have simple control
schemes.

7 Conclusions

We have examined several approaches to simultaneous
optimization of well placement and control, which com-
bine particle swarm optimization (PSO) with pattern

search (GPS). We focused on two general approaches:
a hybrid algorithm combining PSO and GPS (based on
the previously proposed PSwarm algorithm [33]), which

we applied to all variables simultanously, and a decou-
pled method where PSO was applied initially to a well
placement problem (assuming a fixed control scheme),

and GPS was applied to the controls afterwards. These
approaches were applied to a total of five test cases,
with some variants of the different approaches being

tested as well.
Overall, we find that there may be benefits to de-

coupling the well placement and control aspects of the

problem. In three out of five experiments, the decou-
pled algorithm found better solutions, on average, than
any of the approaches that attempted to optimize over

all variables simultaneously. In one case (denoted Case

Case 2A (no constraints, r = 10%)
Best NPV = $1.18×1010

Fig. 8 Best solution found for Case 2A. Plot meanings are
the same as for Fig. 5. Note that several lines overlap in the
plots of the BHP values.

Case 2B (max flow 5000/3000 m3/day, r = 10%)
Best NPV = $1.12×1010

Fig. 9 Best solution found for Case 2B. Plot meanings are
the same as for Fig. 5. Note that several lines overlap in the
plots of the BHP values.

2B), every one of the five solutions found by the de-

coupled algorithm was better than those found by the
hybrid algorithm. We hypothesize that this is due to
the fact that during the well placement phase, the fixed

control scheme assumed by the decoupled approach is
one that is conducive to finding good solutions. Thus,
by reducing the size of the problem and focusing on well

placement, the size of the solution space is reduced, and
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a more thorough exploration of that space is possible.

Although the solution space of the problem when all
variables are considered simultaneously contains any so-
lution that our decoupled approach could possibly find,

it is harder to find those solutions in the larger space.
This finding is similar to results published in some pa-
pers on optimal placement of large numbers of wells,

where it was possible to find better solutions by ini-
tially placing wells according to some pattern, rather
than allowing all well positions to vary freely [28,29].

One caveat is that the decoupled approach is sensi-
tive to the control scheme that is assumed during the

initial well placement phase. In our experiments, we
found in one case (1A) that best solution found by the
decoupled approach was not as good as those found by

any of the simultaneous approaches; the optimal solu-
tions found for this case tended to require raising and
lowering BHPs significantly in order to avoid premature

water flooding. In another test case (1C), we compared
two variants of the decoupled approach and found that
the performance of the algorithm could be improved by

holding BHP values closer to the middle of the permit-
ted range, rather than at the extremes. Thus, if one
employs a decoupled approach, some thought should

be given to the assumed control scheme during the well
placement phase. It is also likely that the effectiveness
of the decoupled approach will suffer for cases where

the control scheme is expected to require varying the
control parameters significantly.

There are many avenues for further exploration of
the joint placement and control problem. These include

modeling more complicated well types such as horizon-
tal, deviated or multilateral wells; incorporating other
decision variables in addition to well location and con-

trol, such as the number and type of wells to drill, and
scheduling of drilling operations; and finally, model-
ing of geological uncertainty. Taking this considerations

into account will also likely require investigating new
optimization techniques to account for the increasing
complexity of the problem.
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