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Preface

In the last two decades adaptive moving mesh methods have received considerable
attention from researchers and practitioners. It has been amply demonstrated that these
methods, either used as stand-alone methods or combined with other adaptive mesh
methods, are capable of producing meshes with desired adaptivity and good quality
(particularly smoothness and alignment). While significant progress has been made,
there has been a continuing effort to improve existing methods and develop more effi-
cient adaptive moving mesh methods. To reflect research frontiers with adaptive moving
mesh methods, this special issue presents five original research papers authored by long
time researchers in the area. For a survey or literature review of the area, the interested
reader is referred to the recent review articles by M. J. Baines, M. E. Hubbard, and P. K. Ji-
mack (Velocity-based moving mesh methods for nonlinear partial differential equations.
Commun. Comput. Phys., 10:509–576, 2011) and C. J. Budd, W. Huang, and R. D. Russell
(Adaptivity with moving grids. Acta Numerica, 18:111–241, 2009) and the monograph
by W. Huang and R. D. Russell (Adaptive Moving Mesh Methods. Springer, New York,
2011).

Adaptive moving mesh methods are a special type of adaptive mesh method. Mesh
adaptation has become an indispensable tool for use to improve computational efficiency
in the numerical solution of partial differential equations and other mesh-related appli-
cations. Many problems arising in science and engineering contain local structures such
as shock waves and sharp layers and interfaces and small mesh spacings are required to
resolve them numerically. The use of uniform meshes is inefficient since a fine mesh has
to be used and the number of degrees of freedom can become large. The basic idea of
mesh adaptation is to distribute mesh points in a more efficient way so that more points
are put in regions containing the local structures and less points are placed in other por-
tions of the spatial domain. Typically a higher accuracy (as compared to a uniform mesh
with the same number of points) can be attained with an adaptive mesh. Furthermore,
an adaptive mesh, with a fewer number of points than with a uniform mesh, can be used
to achieve a specified level of accuracy.

Loosely speaking, there are three types of adaptive mesh methods, h-, p-, and r-
adaptive methods. h-adaptive methods achieve adaptivity by adding and deleting mesh
points and swapping mesh edges/faces while p-adaptive methods do so by adjusting
the order of solution approximation over mesh elements. On the other hand, r-adaptive
methods, also called adaptive moving mesh methods or more simply, moving mesh
methods, achieve desired adaptivity by relocating or moving mesh points. The mesh
connectivity is kept fixed during mesh movement; nevertheless, the mesh points can
be reconnected between time steps or iterations. Adaptive moving mesh methods can
be used alone or combined with h- and p-adaptive methods. It should be pointed out
that Lagrangian methods and arbitrary Lagrangian-Eulerian (ALE) methods in compu-
tational fluid dynamics are special types of adaptive moving mesh methods. Moreover,
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mesh smoothing methods such as Laplacian smoothing and optimization-based smooth-
ing methods employed in mesh generation and mesh refinement can be viewed as a type
of moving mesh method although their goal is to improve mesh quality.

The papers of this special issue are listed in the alphabetical order of the first authors.
The first paper is Explicit time-stepping for moving meshes [pp. 93-105] by M. J. Baines.
Velocity based or Lagrangian adaptive strategies obtain the mesh locations by integrat-
ing a velocity field. Lagrangian methods are able to maintain sharp interfaces in the
solution but may suffer from severe mesh skewness or mesh tangling. Here the author
presents a simple explicit time stepping scheme in 1D which ensures that the mesh is
order–preserving. The scheme is shown to have the same accuracy as explicit Euler and
the accuracy may be increased by a higher order quadrature. The method, in conjunc-
tion with the Lagrangian conservation method, is applied to the inviscid Burgers’ equa-
tion and the porous medium equation. An extension to multiple dimensions is provided
along with a relaxation strategy for implementation.

The second is Stochastic domain decomposition for time dependent adaptive mesh gener-
ation [pp. 106-124] by A. Bihlo, R. D. Haynes, and E. J. Walsh. The authors consider
parallel, (linear) time dependent mesh generation in two spatial dimensions suitable for
multi- or many–core environments. The generation of periodic meshes is also demon-
strated. Typically, PDE based mesh generation methods solve for the mesh on the whole
domain simultaneously. Here the authors provide a divide and conquer approach - di-
viding the spatial domain into subdomains, generating the mesh on the artificial sub-
domain boundaries using an embarrassingly parallel Monte-Carlo evaluation, and then
solving the mesh PDE simultaneously on all the subdomains using the probabilistically
computed solutions as boundary conditions. The approach is demonstrated using four
test examples - a classic Burgers’ equation example with Dirichlet boundary conditions,
mesh generation on a periodic domain with a prescribed mesh density function, Burgers’
equation on a periodic domain, and the shallow water equations on a periodic domain.
The computed meshes are compared to the (global) meshes obtained on a single domain.

The third paper is R-adaptive reconnection-based arbitrary Lagrangian Eulerian method - R-
ReALE [pp. 125-167] by W. Bo and M. Shashkov. Typically, an ALE method has three main
phases, an explicit Lagrangian phase, a rezone phase, and a remapping phase. ReALE
methods differ from more traditional ALE methods mainly in the Lagrangian and rezone
phases and in the use of polygonal meshes. ReALE moves the seeds (of a Voronoi tessel-
lation) using the Lagrangian method, and generates a polygonal mesh using centroidal
Voronoi tessellation (CVT) in the rezone phase. The current work proposes to take mesh
adaptation into consideration in ReALE in two spatial dimensions. This is achieved by
defining a monitor function based on the L1 norm error of a linear interpolation and using
it as a weight function in CVT, which leads to an adaptive polygonal mesh. Numerical
examples show that the new method can gain significant improvements in accuracy and
convergence order over ReALE.

The fourth paper is A comparative numerical study of meshing functionals for variational
mesh adaptation [pp. 168-186] by W. Huang, L. Kamenski, and R. D. Russell. Variational
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mesh adaptation serves as the base of a number of commonly used adaptive moving
mesh methods. Understanding variational methods is crucial to the understanding of
those variational based adaptive moving mesh methods. The paper presents a compar-
ative study in both two and three dimensions for three of the most appealing meshing
functionals, a generalization of Winslow’s variable diffusion functional and two function-
als based on the so-called equidistribution and alignment conditions. Their performance
is investigated numerically in terms of equidistribution and alignment mesh quality mea-
sures. Critical for the study is to perform the substantial computations using a newly
developed efficient implementation of the variational methods.

The last paper is An adaptive grid method for a non-equilibrium PDE model from porous
media [pp. 187-198] by P. A. Zegeling. Flows in a porous media may develop non-
monotone waves which are not present in traditional models such as Richards’ equation
or the Buckley-Levertt equation. Here the author considers the numerical solution of a
mixed higher-order model from hydrology which is capable of producing non–monotone
waves. In 1D smoothed adaptive grids are used. The standard approach of finding an ap-
propriate mesh transformation is complicated by the presence of the higher-order mixed
derivative term. The numerical experiments presented show that the adaptive grid re-
quires a factor of four fewer mesh points (when compared to a uniform grid) to resolve
the appropriate dynamics. Moreover, uniform grids may predict incorrect non-monotone
waves.

It is our hope that the reader could find this special issue useful in understanding
recent advances in adaptive moving mesh methods. But we should point out that this is
only a glimpse of the research of the area. It is certain that a few papers are insufficient to
summarize the advances of an area with activities scattered in many disciplines in science
and engineering.

Finally, we would like to thank the authors for their valuable contributions to this
special issue. Our thanks also go to the editors-in-chief Bo Guan and Jie Shen and the
editorial office for their effort to make the publication of the issue smoothly and timely.
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