Last Name:

First name:
Student ID:

1. Find the fixed points of the following one-dimensional equations. Classify the stability of each fixed points by using linear stability analysis, or a graphical argument if linear analysis fails. Sketch the phase portrait on the real line. Sketch the solution graph $x(t)-t$.
(a) $\quad x^{\prime}=(x-1)(\sin x-\cos x) \quad$ (b) $x^{\prime}=\left(x^{2}-7 x+6\right)(6-x)$
(c) $x^{\prime}=\tanh x-\beta x, \beta>0$
(d) $x^{\prime}=\mu x+x^{3}-x^{5}, \mu>0$.
[30] 2. Sketch the bifurcation diagram of fixed points x^{*} vs. r. Indicate the type of the bifurcation.
(a) $x^{\prime}=x\left(1-r x+x^{2}\right)$
(b) $x^{\prime}=(x-1)\left(r-e^{-x}\right)(c) x^{\prime}=r x-\frac{x}{1+x^{2}}$
(d) $x^{\prime}=r x+x^{3}-x^{5}$
