has one fixed point. a saddle at (—1,0). Its unstable manifold is the x-axis, but its

stable manifold is a curve that is harder to find. The goal of this exercise is to ap-

proximate this unknown curve. ’

a) Let (x,y) be a point on the stable manifold, and assume that (x,y) is close to
(-1,0). Introduce a new variable ¥ = x+1, and write the stable manifold as
y=au +a,u’ +O(’). To determine the coefficients, derive two expressions
for dy/du and equate them.

b) Check that your analytical result produces a curve with the same shape as the
stable manifold shown in Figure 6.1.4.

6.2 Existence, Uniqueness, and Topological Consequences

6.2.1 We claimed that different trajectories can never intersect. But in many
phase portraits, different trajectories appear to intersect at a fixed point. Is there a
contradiction here?

6.2.2  Consider the system % = y, y=~x+ (1 - x* — y*)y.

a) Let D be the open disk x’ +y® <4, Verify that the system satisfies the hy-
potheses of the existence and uniqueness theorem throughout the domain D.

b) By substitution, show that x(¢) =sint, y(r) = cos¢ is an exact solution of the
system.

¢) Now consider a different solution, in this case starting from the initial condition
x(0) =+, v(0)=0. Without doing any calculations, explain why this solution
must satisty x(1)* + y(1)* <1 forall t <oo.

6.3 Fixed Points and Linearization

For each of the following systems, find the fixed points, classify them, sketch the
neighboring trajectories, and try to fill in the rest of the phase portrait.

V 631 x=x-y,y=x-4 6.3.2 i=siny,y=x-x’
V633 i=l+y—e,y=x"—y 634 i=y+tx-x' y=-y
\/6.3.5 X=siny, y=cosx 636 x=xy-1,y=x-y"

6.3.7  For each of the nonlinear systems above, plot a computer-generated phase
portrait and compare to your approximate sketch.

6.3.8  (Gravitational equilibrium) A particle moves along a line joining two sta-
tionary masses, m, and m,, which are separated by a fixed distance a. Let x de-
note the distance of the particle from m,.

Gm, Gm,

a) Show that ¥ = Z—_—? — ——, where G is the gravitational constant.
x—a) X

b) Find the particle’s equilibrium position. Is it stable or unstable?
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6.3.9 Consider the system = y* —4x, y=y' —y—3x.

a) Find all the fixed points and classify them.

b) Show thatthe line x = y is invariant, i.e., any trajectory that starts on it stays on
it.

¢) Show that Ix(t)—_v(t)[ — 0 as ¢t 5 oo for all other trajectories. (Hint: Form a
differential equation for x—y.)

d) Sketch-the phase portrait.

e) If you have access to a computer, plot an accurate phase portrait on the square
domain —20 < x,y < 20. (To avoid numerical instability, you’ll need to use a
fairly small step size, because of the strong cubic nonlinearity.) Notice the tra-
jectories seem to approach a certain curve as  — —oo; can you explain this be-
havior intuitively, and perhaps find an approximate equation for this curve?

6.3.10 (Dealing with a fixed point for which linearization is inconclusive) The

goal of this exercise is to sketch the phase portrait for x = xy, y = x* — y.

a) Show that the linearization predicts that the origin is a non-isolated fixed
point.

b) Show that the origin is in fact an isolated fixed point.

c) Is the origin repelling, attracting, a saddle, or what? Sketch the vector field
along the nuliclines and at other points in the phase plane. Use this information
to sketch the phase portrait.

d) Plot a computer-generated phase portrait to check your answer to (¢).

(Note: This problem can also be solved by a method called center manifold the-

ory, as explained in Wiggins (1990) and Guckenheimer and Holmes (1983).)

6.3.11 (Nonlinear terms can change a star into a spiral) Here’s another example

that shows that borderline fixed points are sensitive to nonlinear terms. Consider

the system in polar coordinates given by r = —r, 6= I/Inr.

a) Find r(t) and 6(¢) explicitly, given an initial condition (r,,6,) .

b) Show that r(f) —» 0 and |8(r)] — o as r — = . Therefore the origin is a stable
spiral for the nonlinear system.

¢) Write the system in x, y coordinates.

d) Show that the linearized system about the origin is x=-x, y=-y. Thus the
origin is a stable star for the linearized system.

6.3.12 (Polar coordinates) Using the identity 6 =tan™'(y/x), show that
0= (xy—yx)/r’.

6.3.13 (Another linear center that’s actually a nonlinear spiral) Consider the sys-
tem % = ~y~x", y=x. Show that the origin is a spiral, although the linearization
predicts a center.

6.3.14 Classify the fixed point at the origin for the system x=-—y+ax’,
y=x+ay’, for all real values of the parameter a .
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6.3.15 Consider the system 7 = r(1-r?), 8 = 1 - cos#, where r,8 represent polar
coordinates. Sketch the phase portrait and thereby show that the fixed point r*=1,
0* =0 is attracting but not Liapunov stable.

6.3.16 (Saddle switching and structural stability) Consider the system

¥=a+x’~xy, y=y* ~x* —1, where a is a parameter.

a) Sketch the phase portrait for a = 0. Show that there is a trajectory connecting
two saddle points. (Such a trajectory is called a saddle connection.)

b) With the aid of a computer if necessary, sketch the phase portrait for a <0 and
a>0.

Notice that for a # 0, the phase portrait has a different topological character: the
saddles are no longer connected by a trajectory. The point of this exercise is that
the phase portrait in (a) is not structurally stable, since its topology can be changed
by an arbitrarily small perturbation a .

6.3.17 (Nasty fixed point) The system X =xy~x’y+y’, y=y*+x> —xy’ has a
nasty higher-order fixed point at the origin. Using polar coordinates or otherwise,
sketch the phase portrait.

6.4 Rabbits versus Sheep

Consider the following “rabbits vs. sheep” problems, where x,y20. Find the
fixed points, investigate their stability, draw the nullclines, and sketch plausible
phase portraits. Indicate the basins of attraction of any stable fixed points.

641 x=x(3-x-y),y=y2-x-y)
6.42 x=x(3-2x-y), y=yQ~-x-y)
6.4.3 x=x(3-2x-2y), y=yQ2-x-y)

The next three exercises deal with competition models of increasing complexity.
We assume N, N, =0 in all cases.

6.4.4  The simplest model is N, = r,N, = b N,N,, N, =r,N, —b,N,N,.

a) In what way is this model less realistic than the one considered in the text?

b) Show that by suitable rescalings of N,, N,, and ¢, the model can be nondimen-
sionalized to x" = x(1—y), y’ = y(p ~ x). Find a formula for the dimensionless
group p.

¢) Sketch the nullclines and vector field for the system in (b).

d) Draw the phase portrait, and comment on the biological implications.

e) Show that (almost) all trajectories are curves of the form plnx—x=
Iny—y+C. (Hint: Derive a differential equation for dx/dy, and separate the
variables.) Which trajectories are not of the stated form?

6.4.5 Now suppose that species #1.has a finite carrying capacity K. Thus
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NI =nN,(1-N,/K))-bNN,

N,=nrN,-b,N,N,.

Nondimensionalize the model and analyze it. Show that there are two qualitatively
different kinds of phase portrait, depending on the size of X, . (Hint: Draw the null-
clines.) Describe the long-term behavior in each case.

6.4.6  Finally, suppose that both species have finite carrying capacities:

Nl =nN (- N /K)~bNN,

N, =nN,(1-N,/K,)~b,NN,.

a) Nondimensionalize the model. How many dimensionless groups are needed?

b) Show that there are four qualitatively different phase portraits, as far as long-
term behavior is concerned.

¢) Find conditions under which the two species can stably coexist. Explain the bio-
logical meaning of these conditions. (Hint: The carrying capacities reflect the com-
petition within a species, whereas the b's reflect the competition berween species.)

6.4.7 (Two-mode laser) According to Haken (1983, p. 129), a two-mode laser
produces two different kinds of photons with numbers n, and n,. By analogy with
the simple laser model discussed in Section 3.3, the rate equations are

#y = G,Nn, —k;n,
1y = G,Nn, ~ kyn,

where N(t)= N, —an —a,n, is the number of excited atoms. The parameters

G,.G,, k k0,0, N, are all positive.

a) Discuss the stability of the fixed point n,*=n,*=0.

b) Find and classify any other fixed points that may exist.

c) Depending on the values of the various parameters, how many qualitatively dif-
ferent phase portraits can occur? For each case, what does the model predict
about the long-term behavior of the laser?

6.5 Conservative Systems

6.5.1  Consider the system ¥ = x° — x.

a) Find all the equilibrium points and classify them.
b) Find a conserved quantity.

c) Sketch the phase portrait.

6.5.2 Consider the system ¥ = x — x7.

a) Find and classify the equilibrium points.
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b) Sketch the phase portrait.
¢) Find an equation for the homoclinic orbit that separates closed and nonclosed
trajectories. )

6.5.3  Find a conserved quantity for the system X = a—e", and sketch the phase
portrait fora<0,a=0,and ¢>0.

6.5.4  Sketch the phase portrait for the system ¥ = ax —x” for a <0, a=0, and
a>0.

6.5.5 Investigate the stability of the equilibrium points of the system
X =(x-a)(x’ - a) for all real values of the parameter a. (Hints: It might help to
graph the right-hand side. An alternative is to rewrite the equation as X = ~V'(x)
for a suitable potential energy function V and then use your intuition about parti-
cles moving in potentials.)

6.5.6 (Epidemic model revisited) In Exercise 3.7.6, you analyzed the Ker-
mack-McKendrick model of an epidemic by reducing it to a certain first-order sys-
tem. In this problem you’ll see how much easier the analysis becomes in the phase
plane. As before, let x(t) 2 0 denote the size of the healthy population and y(1) = 0
denote the size of the sick population. Then the model is

x =—kxy, y=kxy—"{y

where ,7> 0. (The equation for z(¢), the number of deaths, plays no role in the

x,y dynamics so we omit it.)

a) Find and classify all the fixed points.

b) Sketch the nullclines and the vector field.

c) Find a conserved quantity for the system. (Hint: Form a differential equation
for dy/dx. Separate the variables and integrate both sides.)

d) Plot the phase portrait. What happens as t — o0 ?

e) Let (x,,y,) be the initial condition. An epidemic is said to occur if y(¢) in-
creases initially. Under what condition does an epidemic occur?

6.5.7  (General relativity and planetary orbits) The relativistic equation for the
orbit of a planet around the sun is

dl

46’

tu=0o+eu’

where u=1/r and r,8 are the polar coordinates of the planet in its plane of mo-
tion. The parameter ¢ is positive and can be found explicitly from classical New-
tonian mechanics; the term £u° is Einstein’s correction. Here £ is a very small
positive parameter,

a) Rewrite the equation as a system in the (u,v ) phase plane, where v = du/d6 .
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b) Find all the equilibrium points of the system.

¢) Show that one of the equilibria is a center in the (i, v ) phase plane, according to
the linearization. Is it a nonlinear center?

d) Show that the equilibrium point found in (¢) corresponds to a circular planetary
orbit,

Hamiltonian systems are fundamental to classical mechanics; they provide an
equivalent but more geometric version of Newton’s laws. They are also central to
celestial mechanics and plasma physics, where dissipation can sometimes be ne-
glected on the time scales of interest. The theory of Hamiltonian systems is deep
and beautiful, but perhaps too specialized and subtle for a first course on nonlinear
dynamics. See Arnold (1978), Lichtenberg and Lieberman (1992), Tabor (1989),
or Hénon (1983) for introductions.

Here’s the simplest instance of a Hamiltonian system. Let H(p,q) be a smooth,
real-valued function of two variables. The variable g is the “generalized coordinate”
and p is the “conjugate momentum.” (In some physical settings, H could also de-
pend explicitly on time ¢, but we'll ignore that possibility.) Then a system of the form

g=dH/dp,  p=-dH[dq

is called a Hamiltonian system and the function H is called the Hamiltonian.
The equations for ¢ and p are called Hamilton’s equations.
The next three exercises concern Hamiltonian systems.

6.5.8 (Harmonic oscillator) For a simple harmonic oscillator of mass m, spring

2 2
. . . kx
constant k, displacement x, and momentum p, the Hamiltonian is H = _2p +-———2 3
m

Write out Hamilton’s equations explicitly. Show that one equation gives the usual
definition of momentum and the other is equivalent to F = ma . Verify that H is the
total energy.

6.5.9  Show that for any Hamiltonian system, H(x, p) is a conserved quantity.
(Hint: Show H =0 by applying the chain rule and invoking Hamilton’s equations.)

Hence the trajectories lie on the contour curves H(x, p)=C.

6.5.10 (Inverse-square Jaw) A particle moves in a plane under the influence of
2 2
an inverse-square force. It is governed by the Hamiltonian H(p,r) = %— + Eh’z‘ _k
rror
where >0 is the distance from the origin and p is the radial momentum. The pa-

rameters 4 and k are the angular momentum and the force constant, respectively.
a) Suppose k>0, corresponding to an attractive force like gravity. Sketch the
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