Assignment 4, due day Nov 9 at classroom

1. Find the solutions of the given differential equations
1) $y^{\prime \prime}+9 y=4 t^{2} e^{3 t}+2$
2) $y^{\prime \prime}-2 y^{\prime}-3 y=-t e^{-t}$
3) $y^{\prime \prime}+4 y=\cos 2 t, \quad y(0)=2, y^{\prime}(0)=1$
2. Without solving the equation, determine a suitable form for particular solution $Y(t)$.
1) $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-t}(t+3) \sin 2 t+e^{t} \sin 3 t+10$

$$
\text { 2) } y^{\prime \prime}+2 y^{\prime}=2 t+\cos t+e^{-2 t} t^{3} \text {. }
$$

3. Suppose the given functions y_{1} and y_{2} satisfy the corresponding homogeneous equation.

Using the method of variation of parameters to solve the non-homogeneous equations

1) $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}, t>0, \quad y_{1}(t)=t, y_{2}(t)=t e^{t}$
2) $t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}, t>0, \quad y_{1}(t)=1+t, y_{2}(t)=e^{t}$
4. Suppose that $y_{1}(t)=t^{2}$ is a solution of equation

$$
t^{2} y^{\prime \prime}-2 y=0, t>0
$$

a) Using the method of reduction of order to find a second solution $y_{2}(t)$.
b) Using the method of variation of parameters to solve the following equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

5. Determine whether the given set of functions is linearly independent or linearly dependent.
1) $12 t-3, t^{2}+1,2 t^{2}-t$
2) $1, \cos t, \sin t$
6. Find the general solution of the given differential equations
1) $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$
2) $y^{(4)}-y^{\prime \prime}=0$.
3) $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=2 e^{t}+3$,
4) $y^{(4)}-y=3 t+\sin t$
