Mathematics 2260: ODE (I)

Solution to Assignment 2

1. Find the solutions by using substitution method

$$
\text { 1) } y^{\prime}=(x+2 y) /(2 x+y) \quad \text { 2) }\left(y^{4}-2 x^{3} y\right) d x+\left(x^{4}-2 x y^{3}\right) d y=0
$$

1)5': Rewrite the equation as

$$
\frac{d y}{d x}=\frac{1+\frac{2 y}{x}}{2+\frac{y}{x}}
$$

Assume $v=\frac{y}{x}$. Then $y^{\prime}=\frac{d y}{d x}=v+x v^{\prime}$ and the equation becomes

$$
v+x v^{\prime}=\frac{1+2 v}{2+v}
$$

or

$$
x v^{\prime}=\frac{1+2 v}{2+v}-v=\frac{1-v^{2}}{2+v} .
$$

So we have

$$
\frac{2+v}{1-v^{2}} d v=\frac{1}{x} d x
$$

Since

$$
\frac{2+v}{1-v^{2}}=\frac{\frac{1}{2}}{1+v}+\frac{\frac{3}{2}}{1-v},
$$

we have

$$
\int\left(\frac{\frac{1}{2}}{1+v}+\frac{\frac{3}{2}}{1-v}\right) d v=\int \frac{1}{x} d x
$$

and

$$
\frac{1}{2} \ln |1+v|-\frac{3}{2} \ln |1-v|=\ln |x|+C .
$$

Returning to y, we have

$$
\frac{1}{2} \ln \left|1+\frac{y}{x}\right|-\frac{3}{2} \ln \left|1-\frac{y}{x}\right|=\ln |x|+C .
$$

2) 5 'rewrite the equation as

$$
\frac{d y}{d x}=-\frac{y^{4}-2 x^{3} y}{x^{4}-2 x y^{3}}
$$

and

$$
\frac{d y}{d x}=-\frac{\left(\frac{y}{x}\right)^{4}-2 \frac{y}{x}}{1-2\left(\frac{y}{x}\right)^{3}}
$$

assume that

$$
v=\frac{y}{x} .
$$

Then we have

$$
y^{\prime}=v+x v^{\prime}
$$

and

$$
x v^{\prime}=-\frac{v^{4}-2 v}{1-2 v^{3}}-v=\frac{v+v^{4}}{1-2 v^{3}} .
$$

So

$$
\frac{1-2 v^{3}}{v+v^{4}} d v=\frac{1}{x} d x
$$

or

$$
\frac{1}{v}+\frac{-3 v^{2}}{1+v^{3}}=\frac{1}{x} d x .
$$

taking integration both sides gives

$$
\ln |v|-\ln \left|1+v^{3}\right|=\ln |x|+C
$$

or

$$
\frac{v}{1+v^{3}}=c x, \quad c=e^{C} .
$$

returning to y, we have

$$
\frac{y / x}{1+(y / x)^{3}}=c x .
$$

2. 3) Assume that $v=y^{\prime}$, then we obtain

$$
v^{\prime}+t^{-1} v=0 .
$$

Solve this equation gives

$$
v=c_{1} t^{-1} .
$$

Since $v=y^{\prime}$, we have

$$
\begin{aligned}
y & =\int v(t) d t \\
& =c_{1} \int t^{-1} d t+c_{2} \\
& =c_{1} \ln |t|+c_{2} .
\end{aligned}
$$

2) rewrite the equation as $t^{2} \frac{y^{\prime}}{y^{3}}+2 t \frac{1}{y^{2}}=1$. Set $v=\frac{1}{y^{2}}, v^{\prime}=-2 \frac{y^{\prime}}{y^{3}}$, So we have

$$
t^{2} v^{\prime}-4 t v=-2 .
$$

Solve the above equation. $y= \pm\left[5 t /\left(2+5 c t^{5}\right)\right]^{1 / 2}$.
3).From Bernoulli equation or seperation of variable, we have $y=\frac{r e^{r x}}{c r+k e^{r x}}$.
3. suppose that a certain population obeys the logistic equation $d y / d t=r y[1-y / K]$.
(a) If $y_{0}=K / 3$, find the time τ at which the initial population has doubled. Find the value of τ corresponding to $r=0.025$ per year.
(b)If $y_{0}=\alpha K$, find the time T at which $y(T)=\beta K$, where $0<\alpha, \beta<1$.

Solution:(a) 4': Using

$$
\frac{y}{K}=\frac{y_{0} / K}{y_{0} / K+\left[1-y_{0} / K\right] e^{-r t}},
$$

we have

$$
e^{-r t}=\frac{y_{0} / K[1-y / K]}{y / K\left[1-y_{0} / K\right]}
$$

or

$$
\begin{equation*}
t=\frac{-1}{r} \ln \frac{y_{0} / K[1-y / K]}{y / K\left[1-y_{0} / K\right]} . \tag{1}
\end{equation*}
$$

Seting $y=2 y_{0}$,

$$
\tau=\frac{-1}{r} \ln \frac{1}{4}=55.45 \text { years }
$$

(b) 4': in (1), set $y_{0} / K=\alpha$ and $y / K=\beta$. as a result, we obtain

$$
T=-\frac{1}{r} \ln \left|\frac{\alpha(1-\beta)}{\beta(1-\alpha)}\right|
$$

4. $y^{\prime}=r y-H$. Re-write $y^{\prime}-r y=-H . \mu=e^{-r t} . y(t)=\frac{H}{r}+C e^{r t}$.

$$
y(0)=10 \rightarrow C=10-\frac{H}{r}
$$

So the solution is $y(t)=\frac{H}{r}+\left(10-\frac{H}{r}\right) e^{r t}$.

1) $H=0 . y(t)=10 e^{r t} . y(3)=45 \rightarrow 45=10 e^{3 r} \rightarrow r=\frac{\ln 4.5}{3}=0.501$.
2) $17=\frac{H}{0.501}+\left(10-\frac{H}{0.486}\right) \times 4.5 \rightarrow H=4.01$.
3) $y(10)=\frac{4.01}{0.501}+\left(10-\frac{4.01}{0.501}\right) e^{10 \times \frac{\ln 4.5}{3}}=309$.
5. Determine (with out solving the problem) an interval in which the solution of the given initial value problem is certain to exist:

$$
t(t-4) y^{\prime}+y=2 t, y(2)=1
$$

Solution(4'): Divided both side by $t(t-4)$, we have

$$
y^{\prime}+\frac{1}{t(t-4)} y=\frac{2}{t-4}
$$

Since $p(t)=\frac{1}{t(t-4)}$ is not continuous at $t=0$ and $t=4$, and $g(t)=\frac{2}{t-4}$ is not continuous at $t=4$ and the initial point t_{0} is 2 , we have that in the interval $(0,4)$, the solution is certain to exist.
6. Determine whether or not each of the following equation is exact. If it is exact, find the general solution; otherwise, find an integrating factor and solve it:

1) $\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) y^{\prime}=0$
2) $\left(e^{x} \sin y-2 y \sin x\right) d x+\left(e^{x} \cos y+2 \cos x\right) d y=0$

$$
\text { 3) } \frac{d y}{d x}=-\frac{a x+b y}{b x+c y}
$$

4) $y d x+\left(2 x y-e^{-2 y}\right) d y=0$

Solution 1) $4^{\prime}: ~ M=2 x y^{2}+2 y, N=2 x^{2} y+2 x, M_{y}=4 x y+2$ and $N_{x}=4 x y+2$. Thus

$$
\begin{aligned}
& M_{y}=N_{x}, \text { the equation is exact. } \\
& \begin{aligned}
\Psi(x, y) & =\int M d x+h(y) \\
& =x^{2} y^{2}+2 x y+h(y)
\end{aligned}
\end{aligned}
$$

By $\Psi_{y}=N$, we have

$$
h^{\prime}(y)=0
$$

and $h(y)=c$. So the solution is determined by

$$
x^{2} y^{2}+2 x y=C .
$$

2) $4^{\prime}:$

$$
M=\left(e^{x} \sin y-2 y \sin x\right), N=\left(e^{x} \cos y+2 \cos x\right)
$$

So

$$
M_{y}=e^{x} \cos y-2 \sin x=N_{x}=e^{x} \cos y-2 \sin x .
$$

The equation is exact and

$$
\begin{aligned}
\Psi(x, y) & =\int M d x+h(y) \\
& =e^{x} \sin y+2 y \cos x+h(y)
\end{aligned}
$$

By $\Psi_{y}=N$, we have $h^{\prime}(y)=0$ and $h(y)=c$.
So the solution is determined by

$$
e^{x} \sin y+2 y \cos x=C
$$

3) 4': Rewrite the equation as

$$
(a x+b y) d x+(b x+c y) d y=0
$$

where $M=a x+b y, N=b x+c y$.

$$
M_{y}=b=N_{x} .
$$

So this equation is exact.

$$
\begin{aligned}
\Psi(x, y) & =\int M d x+h(y) \\
& =\frac{1}{2} a x^{2}+b x y+h(y) .
\end{aligned}
$$

Using $\Psi_{y}=N$ gives

$$
h^{\prime}(y)=c y
$$

and

$$
h(y)=\frac{c y^{2}}{2} .
$$

The solution is determined by

$$
\frac{1}{2} a x^{2}+b x y+\frac{c y^{2}}{2}=C
$$

4) 4^{\prime} :

$$
M=y, \quad N=2 x y-e^{-2 y}
$$

and

$$
M_{y}=1 \neq N_{x}=2 y .
$$

It is not an exact equation.
Assume that μ is a function of y. then

$$
\mu_{y}^{\prime}=-\mu \frac{M_{y}-N_{x}}{M}=-\mu \frac{1-2 y}{y}=\mu\left(2-\frac{1}{y}\right) .
$$

Solving this equation to take

$$
\mu=\frac{1}{y} e^{2 y} .
$$

Then the new equation is

$$
e^{2 y} d x+\left(2 x e^{2 y}-\frac{1}{y}\right) d y=0 .
$$

We have

$$
\begin{aligned}
\Psi & =\int e^{2 y} d x+h(y) \\
& =x e^{2 y}+h(y) .
\end{aligned}
$$

Using $\Psi_{y}=N$, we have

$$
h^{\prime}(y)=-\frac{1}{y}
$$

and take $h(y)=-\ln y$. So the solution is determined by

$$
x e^{2 y}-\ln y=C .
$$

7. Determine the longest interval in which the given value problem is certain to have twice differentiable solution. Do not attempt to find the solution.

$$
\text { 1) }(x-3) y^{\prime \prime}+x y^{\prime}+(\ln |x|) y=0, y(1)=0, y^{\prime}(1)=1
$$

2) $(x-2) y^{\prime \prime}+y^{\prime}+(x-2)(\tan x) y=0, y(3)=1, y^{\prime}(3)=2$.

Solution 1)3': re-write the equation as

$$
y^{\prime \prime}+\frac{x}{(x-3)} y^{\prime}+\frac{1}{(x-3)}(\ln |x|) y=0 .
$$

Obviously $p(t)=\frac{x}{(x-3)}$ is not continuous at $x=3$ and $q(t)=\frac{1}{(x-3)}(\ln |x|)$ is not continuous at $x=3$ and $x=0$. The initial point t_{0} is 1 . So the lonest interval is $(0,3)$.
2) 3': rewrite the equation:

$$
y^{\prime \prime}+\frac{1}{(x-2)} y^{\prime}+(\tan x) y=0
$$

$p(t)=\frac{1}{x-2}$ is not continuous at $x=2$. Since $\tan x$ is not continuous at $-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$ and it is continuous in the interval $\left(\pi / 2, \frac{3}{2} \pi\right)$, and the initial point t_{0} is 3 , we have that the longest interval is $\left(2, \frac{3}{2} \pi\right)$.

