Assignment 1, due day Sep 26 at classroom

1.Determine the order of the following equations; also state whether the equation is linear or nonlinear.
(a) $\frac{d^{4} y}{d t^{4}}+3 t^{4} \frac{d^{2} y}{d t^{2}}+y=\sin t^{4}$;
(b) $\frac{d^{2} y}{d t^{2}}+\cos (t+y)=t^{2}$
(c) $u_{x x}+u_{y}+u_{y y y x}=0$;
(d) $u_{t}+u u_{x}=1+u_{x x x}$
2. Verify that $y_{1}=e^{-3 t}$ and $y_{2}=e^{t}$ are the solutioms of the following equation

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0, t>0 .
$$

3. Consider a population p of field mice that grows at a rate propotional to the current population:

$$
\frac{d p}{d t}=r p \quad \text { where } r \text { is a constant. }
$$

(a) Assume that $p(0)=p_{0}$. Find the rate r so that the population doubles in 30 days. (b)Find r if the population doubles in N days.
4. Find the general solution of the following problem and use it to determine how the solutions behave as $t \rightarrow \infty$:
(a) $y^{\prime}+3 y=1+e^{-2 t}$
(b) $y^{\prime}-2 y=t^{2} e^{2 t}$
(c) $y^{\prime}+y=t e^{-t}+1$
5. Solve the equation: $t^{3} y^{\prime}+4 t^{2} y=e^{-t}, y(-1)=0, t<0$ by the method of integrating factor.
6. Find the solutions to the following initial problem
(a) $y^{\prime}+2 y=t e^{-2 t}, y(1)=0$;
(b) $y^{\prime}+\frac{2}{t} y=\cos (t) / t^{2}, y(\pi)=0$
(c) $y^{\prime}-2 y=e^{2 t}, y(0)=2, t>0$.
7. Find the general solutions of the following equations by the method of seperation of variables.
(a) $\frac{d y}{d x}=\frac{x-e^{-x}}{y+e^{y}}$
(b) $y^{\prime}=2 \sin (2 x) /(3+2 y)$,
(c) $x y^{\prime}=\left(1-y^{2}\right)$
(d) $y^{\prime}=2 x /(1+2 y), y(2)=0$.
8. Find the value of y_{0} for which the solution of the initial value problem

$$
y^{\prime}-y=1+t e^{-t}, \quad y(0)=y_{0}
$$

remains finite as $t \longrightarrow \infty$

