Mathematics 3260: ODE (I)

Assignment 1, Solution

1.Determine the order of the following equations; also state whether the equation is linear or nonlinear.
(a) $\frac{d^{4} y}{d t^{4}}+3 t^{4} \frac{d^{2} y}{d t^{2}}+y=\sin t^{4}$;
(b) $\frac{d^{2} y}{d t^{2}}+\cos (t+y)=t^{2}$
(c) $u_{x x}+u_{y}+u_{y y y x}=0$;
(d) $u_{t}+u u_{x}=1+u_{x x x}$

Solution (a)order 4;linear (b)order 2;nonlinear(c)order 4;linear (d) order 3;non-linear
2. Verify that $y_{1}=e^{-3 t}$ and $y_{2}=e^{t}$ are the solutioms of the following equation

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0, t>0 .
$$

Substitute $y_{1}=e^{-3 t}$ to the equation $y^{\prime \prime}-2 y^{\prime}-3 y=0$ to have

$$
\left(e^{-3 t}\right)^{\prime \prime}+2\left(e^{-3 t}\right)^{\prime}-3 e^{-3 t}=0 .
$$

Do the same for $y_{2}=e^{t}$.
3. Consider a population p of field mice that grows at a rate propotional to the current population:

$$
\frac{d p}{d t}=r p \quad \text { where } r \text { is a constant. }
$$

(a) Assume that $p(0)=p_{0}$. Find the rate r so that the population doubles in 30 days.
(b)Find r if the population doubles in N days.

Solution (a) The general solution to the DE is $p(t)=C e^{r t}$. Using $p(0)=p_{0}$ to have $C=p_{0}$. The solution is $p(t)=p_{0} e^{r t}$. Using $p(30)=2 p_{0}$ gives

$$
2 p_{0}=p_{0} e^{30 r}
$$

or $r=\frac{\ln 2}{30}$.
(b) $r=\frac{\ln 2}{N}$
4. Find the general solution of the following problem and use it to determine how the solutions behave as $t \rightarrow \infty$:
(a) $y^{\prime}+3 y=1+e^{-2 t}$
(b) $y^{\prime}-2 y=t^{2} e^{2 t}$
(c) $y^{\prime}+y=t e^{-t}+1$
(a) $\mu(t)=e^{3 t} \cdot \mathrm{y}(\mathrm{t})=\frac{1}{3}+e^{-2 t}+C e^{-3 t}$. Therefore, $\mathrm{y} \rightarrow \frac{1}{3}$ as $t \rightarrow \infty$.
(b) $\mu=e^{-2 t} . \mathrm{y}(\mathrm{t})=t^{3} e^{2 t} / 3+C e^{2 t}$. All solution increase at an exponential rate.
(c) $\mu=e^{2 t}$. $y(t)=t^{2} e^{-t} / 2+1+C e^{-t}$. All solution converge to constant 1 .
5. Solve the equation: $t^{3} y^{\prime}+4 t^{2} y=e^{-t}, y(-1)=0, t<0$ by the method of integrating factor.

Solution: rewrite

$$
\begin{array}{r}
y^{\prime}+\frac{4}{t} y=t^{-3} e^{-t} \\
\mu=e^{\int \frac{4}{t} d t}=t^{4} \cdot \mathrm{y}(\mathrm{t})=-\frac{(t+1) e^{-t}+c}{t^{4}} \cdot y(-1)=0 \Rightarrow c=0
\end{array}
$$

6. Find the solutions to the following initial problem
(a) $y^{\prime}+2 y=t e^{-2 t}, y(1)=0$;
(b) $y^{\prime}+\frac{2}{t} y=\cos (t) / t^{2}, y(\pi)=0$
(c) $y^{\prime}-2 y=e^{2 t}, y(0)=2, t>0$.

Solution (a) $\mu=e^{2 t} ; y(t)=t^{2} e^{-2 t} / 2+c e^{-2 t} ; c=-\frac{1}{2}$.
(b) $\mu=t^{2} . \mathrm{y}(\mathrm{t})=\frac{\sin t}{t^{2}}$.
(c) $\mu=e^{-2 t} . y(t)=(t+2) e^{2 t}$.
7. Find the general solutions of the following equations by the method of seperation of variables.
(a) $\frac{d y}{d x}=\frac{x-e^{-x}}{y+e^{y}}$
(b) $y^{\prime}=2 \sin (2 x) /(3+2 y)$,
(c) $x y^{\prime}=\left(1-y^{2}\right)$
(d) $y^{\prime}=2 x /(1+2 y), y(2)=0$.

Solution (a) $\left(\mathrm{y}+\mathrm{e}^{y}\right) d y=\left(x-e^{x}\right) d x$;

$$
\int\left(y+e^{y}\right) d y=\int\left(x-e^{x}\right) d x \Rightarrow y^{2} / 2+e^{y}=\frac{1}{2} x^{2}+e^{-x}+C
$$

(b) $3 \mathrm{y}+\mathrm{y}^{2}=-\cos 2 x+C$
(c) $\frac{d y}{1-y^{2}}=\frac{1}{x} d x \Rightarrow \frac{1}{2} \frac{d y}{1+y}-\frac{1}{2} \frac{d y}{1-y}=\frac{1}{x} d x \Rightarrow \frac{1}{2} \ln |1+y|-\frac{1}{2} \ln |1-y|=\ln x+C$
(d) $y+y^{2}=x^{2}+C \Rightarrow C=-4$.
8. Find the value of y_{0} for which the solution of the initial value problem

$$
y^{\prime}-y=1+t e^{-t}, \quad y(0)=y_{0}
$$

remains finite as $t \longrightarrow \infty$
Solution: $\mu=e^{-t} . \mathrm{y}=-1-\frac{1}{2} t e^{-t}-\frac{1}{4} e^{-t}+C e^{t} . y(0)=y_{0} \Rightarrow C=y_{0}+\frac{5}{4}$.
The solution is $\mathrm{y}=-1-\frac{1}{2} t e^{-t}-\frac{1}{4} e^{-t}+\left(y_{0}+\frac{5}{4}\right) e^{t}$. Since $e^{t} \rightarrow \infty$ as $t \rightarrow \infty$, we take $\mathrm{y}_{0}=\frac{-5}{4}$ so that the solution $\mathrm{y}=-1-\frac{1}{2} t e^{-t}-\frac{1}{4} e^{-t}$ is finite.

