MEMORIAL UNIVERSITY OF NEWFOUNDLAND
DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH2050 Assignment 8 Solutions

Due: Wednesday 22 November
[10] 1. For each of the following matrices,
i. find the matrix M of minors, the matrix C of cofactors, the adjoint $\operatorname{adj} A$, and compute $(\operatorname{adj} A) A$ and $A(\operatorname{adj} A)$.
ii. find $\operatorname{det} A$.
iii. find A^{-1} or state why it doesn't exist.
(a) $A=\left[\begin{array}{cc}4 & 7 \\ 8 & 14\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}3 & 5 & 2 \\ 4 & 8 & 9 \\ -1 & 2 & 5\end{array}\right]$

Solution.

(a)
i. $M=\left[\begin{array}{cc}14 & 8 \\ 7 & 4\end{array}\right] \quad C=\left[\begin{array}{cc}14 & -8 \\ -7 & 4\end{array}\right] \quad \operatorname{adj} A=\left[\begin{array}{cc}14 & -7 \\ -8 & 4\end{array}\right] \quad(\operatorname{adj} A) A=A(\operatorname{adj} A)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
ii. $\operatorname{det} A=4(14-7(8)=0$.
iii. A does not have an inverse because it is singular $(\operatorname{det} A=0)$.
(b)
i. $M=\left[\begin{array}{ccc}22 & 29 & 16 \\ 21 & 17 & 11 \\ 29 & 19 & 4\end{array}\right] \quad C=\left[\begin{array}{ccc}22 & -29 & 16 \\ -21 & 17 & -11 \\ 29 & -19 & 4\end{array}\right] \quad \operatorname{adj} A=\left[\begin{array}{ccc}22 & -21 & 29 \\ -29 & 17 & -19 \\ 16 & -11 & 4\end{array}\right]$

$$
(\operatorname{adj} A) A=A(\operatorname{adj} A)=\left[\begin{array}{ccc}
-47 & 0 & 0 \\
0 & -47 & 0 \\
0 & 0 & -47
\end{array}\right]
$$

ii. $\operatorname{det} A=3(22)+5(-29)+2(16)=-47$.
iii. $A^{-1}=\frac{1}{-47} \operatorname{adj} A=\frac{-1}{47}\left[\begin{array}{ccc}22 & -21 & 29 \\ -29 & 17 & -19 \\ 16 & -11 & 4\end{array}\right]$.
[6] 2. Use a Laplace expansion to find the determinant of each of the following matrices.

$$
A=\left[\begin{array}{lll}
4 & 3 & 1 \\
0 & 2 & 1 \\
3 & 5 & 2
\end{array}\right] . \quad B=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
1 & 2 & 0 & 1 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

Solution.

The Laplace expansion along the second row of A yields

$$
\begin{aligned}
\operatorname{det} A & =2\left|\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right|-\left|\begin{array}{ll}
4 & 3 \\
3 & 5
\end{array}\right| \\
& =2(5)-11 \\
& =-1
\end{aligned}
$$

The Laplace expansion along the fourth row of B yields

$$
\begin{aligned}
\operatorname{det} B & =\left|\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right|-\left|\begin{array}{ccc}
1 & 0 & 3 \\
1 & 2 & 1 \\
-1 & 2 & 0
\end{array}\right|+\left|\begin{array}{ccc}
1 & 0 & 2 \\
1 & 2 & 0 \\
-1 & 2 & 1
\end{array}\right| \\
& =\left(-\left|\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right|-\left|\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right|\right)-\left(\left|\begin{array}{cc}
2 & 1 \\
2 & 0
\end{array}\right|+3\left|\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right|\right)+\left(\left|\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right|+2\left|\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right|\right) \\
& =-(-3)-3-(-2)-3(4)+2+2(4) \\
& =0
\end{aligned}
$$

You may have expanded along different rows at each step, but $\operatorname{det} B=0$ regardless of your choice.
[6] 3. Are the following sets of vectors linearly independent or not?
(a) $\overrightarrow{a_{1}}=\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right], \overrightarrow{a_{2}}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ and $\overrightarrow{a_{3}}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.
(b) $\overrightarrow{b_{1}}=\left[\begin{array}{l}0 \\ 2 \\ 2 \\ 1\end{array}\right], \overrightarrow{b_{2}}=\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right], \overrightarrow{b_{3}}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 0\end{array}\right]$ and $\overrightarrow{b_{4}}=\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 1\end{array}\right]$.

Solution.

(a) The vectors $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$ and $\overrightarrow{a_{3}}$ are linearly independent if and only if $\operatorname{det} A \neq 0$, where A is the 3×3 matrix whose columns are the vectors $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$ and $\overrightarrow{a_{3}}$. From question 2 we saw that $\operatorname{det} A=-1$, so $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$ and $\overrightarrow{a_{3}}$ are linearly independent.

Note: Since $\operatorname{det} A \neq 0$, what does that tell us about solutions to the equation $A \vec{x}=\overrightarrow{0}$?
(b) First notice that we can equivalently ask whether the vectors $\overrightarrow{b_{3}}, \overrightarrow{b_{1}}, \overrightarrow{b_{2}}$ and $\overrightarrow{b_{4}}$ are linearly independent (the order of the vectors doesn't matter). These vectors are linearly independent if and only if $\operatorname{det} B \neq 0$, where B is the matrix whose columns are given by the vectors $\overrightarrow{b_{3}}, \overrightarrow{b_{1}}, \overrightarrow{b_{2}}$ and $\overrightarrow{b_{4}}$. We saw in question 2 that $\operatorname{det} B=0$, so $\overrightarrow{b_{1}}, \overrightarrow{b_{2}}, \overrightarrow{b_{3}}$ and $\overrightarrow{b_{4}}$ are linearly dependent.
[6] 4. Let A and B be 4×4 invertible matrices such that $\operatorname{det} A=-2$ and $\operatorname{det} B=5$. Find the following determinants
(a) $\operatorname{det} A^{-1}$
(b) $\operatorname{det} \frac{1}{3} A$
(c) $\operatorname{det} A^{-1} B^{T} A^{2}(2 B)$.

Solution.

(a) $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}=-1 / 2$.
(b) $\operatorname{det} \frac{1}{3} A=\left(\frac{1}{3}\right)^{4} \operatorname{det} A=-2 / 81$ since A is a 4×4 matrix.
(c)

$$
\begin{aligned}
\operatorname{det}\left(A^{-1} B^{T} A^{2}(2 B)\right) & =\left(\operatorname{det} A^{-1}\right)\left(\operatorname{det} B^{T}\right)(\operatorname{det} A)(\operatorname{det} A) \operatorname{det}(2 B) \quad \text { since the determinant is multiplicative } \\
& =\frac{1}{\operatorname{det} A}(\operatorname{det} B)(\operatorname{det} A)^{2}\left(2^{4} \operatorname{det} B\right) \\
& =2^{4}(\operatorname{det} A)(\operatorname{det} B)^{2} \\
& =-\left(2^{5}\right)(25)=-800 .
\end{aligned}
$$

[4] 5. Suppose $\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|=5$. Find $\left|\begin{array}{ccc}2 p & 7 a & a-x \\ 2 q & 7 b & b-y \\ 2 r & 7 c & c-z\end{array}\right|$.

Solution.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2 p & 7 a & a-x \\
2 q & 7 b & b-y \\
2 r & 7 c & c-z
\end{array}\right|=\left|\begin{array}{ccc}
2 p & 2 q & 2 r \\
7 a & 7 b & 7 c \\
a-x & b-y & c-z
\end{array}\right| \\
& =14\left|\begin{array}{ccc}
p & q & r \\
a & b & c \\
a-x & b-y & c-z
\end{array}\right| \\
& =14\left(\left|\begin{array}{lll}
p & q & r \\
a & b & c \\
a & b & c
\end{array}\right|+\left|\begin{array}{ccc}
p & q & r \\
a & b & c \\
-x & -y & -z
\end{array}\right|\right) \text { by linearity of rows } \\
& =14\left|\begin{array}{ccc}
p & q & r \\
a & b & c \\
-x & -y & -z
\end{array}\right| \\
& =-14\left|\begin{array}{lll}
p & q & r \\
a & b & c \\
x & y & z
\end{array}\right| \\
& =14\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right| \\
& \text { since } \operatorname{det} A=0 \text { if } A \text { has two rows equal to each other } \\
& =70 . \\
& \text { by factoring } 2 \text { from the first row and } 7 \text { from the second row } \\
& \text { since } \operatorname{det} A=0 \text { if } A \text { has two rows equal to each other } \\
& \text { by factoring }-1 \text { from the third row }
\end{aligned}
$$

[8] 6. Without using the fact that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$, show that $\operatorname{det}(E A)=(\operatorname{det} E)(\operatorname{det} A)$ for any $n \times n$ matrix A and elementary matrix E. (Consider separately the cases when A is singular and invertible).

Solution.

If $\operatorname{det} A=0$ then A is not invertible, and neither is $E A$. Thus $\operatorname{det}(E A)=0$ and $(\operatorname{det} E)(\operatorname{det} A)=0$.
If A is invertible, then we consider the three different types of elementary matrices. If E is an elementary matrix corresponding to the row operation of interchanging two rows then $\operatorname{det} E=-1$ and $\operatorname{det}(E A)=-\operatorname{det} A$.
If E is an elementary matrix corresponding to the row operation of multiplying a row by a constant c, then $\operatorname{det} E=c$ (because E is a diagonal matrix with one diagonal entry equal to c and the remaining diagonal entries equal to 1) and $\operatorname{det}(E A)=c \operatorname{det} A$ (because we can factor c from the relevant row of A).
Finally, if E is an elementary matrix corresponding to the row operation of subtracting a multiple of one row from another, then $\operatorname{det} E=1$ (because E is a triangular matrix whose diagonal entries are all equal to 1) and $\operatorname{det}(E A)=\operatorname{det} A$ (by linearity of the rows of a determinant).
Thus, in each case $\operatorname{det}(E A)=(\operatorname{det} E)(\operatorname{det} A)$.

