MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH2050 Assignment 8

Due: Wednesday 22 November
[10] 1. For each of the following matrices,
i. find the matrix M of minors, the matrix C of cofactors, the adjoint $\operatorname{adj} A$, and $\operatorname{compute}(\operatorname{adj} A) A$ and $A(\operatorname{adj} A)$.
ii. find $\operatorname{det} A$.
iii. find A^{-1} or state why it doesn't exist.
(a) $A=\left[\begin{array}{cc}4 & 7 \\ 8 & 14\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}3 & 5 & 2 \\ 4 & 8 & 9 \\ -1 & 2 & 5\end{array}\right]$
[6] 2. Use a Laplace expansion to find the determinant of each of the following matrices.

$$
A=\left[\begin{array}{lll}
4 & 3 & 1 \\
0 & 2 & 1 \\
3 & 5 & 2
\end{array}\right] . \quad B=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
1 & 2 & 0 & 1 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

[6] 3. Are the following sets of vectors linearly independent or not?
(a) $\overrightarrow{a_{1}}=\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right], \overrightarrow{a_{2}}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ and $\overrightarrow{a_{3}}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.
(b) $\overrightarrow{b_{1}}=\left[\begin{array}{l}0 \\ 2 \\ 2 \\ 1\end{array}\right], \overrightarrow{b_{2}}=\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right], \overrightarrow{b_{3}}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 0\end{array}\right]$ and $\overrightarrow{b_{4}}=\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 1\end{array}\right]$.
[6] 4. Let A and B be are 4×4 invertible matrices such that $\operatorname{det} A=-2$ and $\operatorname{det} B=5$. Find the following determinants
(a) $\operatorname{det} A^{-1}$
(b) $\operatorname{det} \frac{1}{3} A$
(c) $\operatorname{det} A^{-1} B^{T} A^{2}(2 B)$.
[4] 5. Suppose $\left|\begin{array}{ccc}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|=5$. Find $\left|\begin{array}{ccc}2 p & 7 a & a-x \\ 2 q & 7 b & b-y \\ 2 r & 7 c & c-z\end{array}\right|$.
[8] 6. Without using the fact that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$, show that $\operatorname{det}(E A)=(\operatorname{det} E)(\operatorname{det} A)$ for any $n \times n$ matrix A and elementary matrix E. (Consider separately the cases when A is singular and invertible).

