MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 7	Mathematics 2050	fall 2017
Assignment /	Mathematics 2000	1all 2017

Due:November 7, 2017 . SHOW ALL WORK

- [4] 1. Recall that a circle in the xy-plane has an equation of the form $x^2 + y^2 + ax + by + c = 0$. Find the equation of the circle that passes through the points (10,7), (-4,-7) and (-6,-1). Complete squares to find the centre and the radius of the circle.
- [3] 2. Calculate AB and BA and determine whether A and B are inverses of each other.

(a)
$$A = \begin{bmatrix} 2 & 0 & -\frac{1}{2} \\ -1 & 0 & \frac{1}{2} \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ -1 & -2 \\ 2 & 4 \end{bmatrix}$
(b) $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$ and $B = \frac{1}{24} \begin{bmatrix} 24 & 0 & 0 & 0 \\ 0 & 12 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$

[4] 3. Find all values of *a* for which the following homogeneous system has a nontrivial solution. Also, find all solutions.

$$\begin{cases} x - y - 2z &= 0\\ x - 2y + az &= 0\\ 2x + ay - 5z &= 0 \end{cases}$$

- [5] 4. For the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$, find A^{-1} if it exists.
- [3] 5. Given the matrices $A = \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 4 & 2 \end{bmatrix}$, find a matrix X such that $A^{-1}XA = B$.
- [4] 6. Given the matrix $C = \begin{bmatrix} -1 & 1 \\ 4 & 2 \end{bmatrix}$, find a matrix X such that $(X^T 2I)^{-1} = C$
- [3] 7. (a) If A and B are invertible $n \times n$ matrices that commute, prove that B and A^{-1} commute.
- [4] (b) Let A be an $n \times n$ matrix such that $A^2 + 2A + I = 0$. Prove that A is invertible and find its inverse.
- [4] (c) Let A + I be invertible. Show that $(A + I)^{-1}$ and (I A) commute.
- $[6] \qquad 8. \text{ Let } A = \left[\begin{array}{cc} -1 & 2\\ 3 & 1 \end{array} \right] \,.$
 - (a) (a) Express the matrix A as the product of elementary matrices.
 - (b) (b) Express the matrix A^{-1} as the product of elementary matrices.