MEMORIAL UNIVERSITY OF NEWFOUNDLAND

[4] 1. Recall that a circle in the $x y$-plane has an equation of the form $x^{2}+y^{2}+a x+b y+c=0$. Find the equation of the circle that passes through the points $(10,7),(-4,-7)$ and $(-6,-1)$. Complete squares to find the centre and the radius of the circle.

Solution: Substituting the given points in the equation $x^{2}+y^{2}+a x+b y+c=0$, we get the following system of linear equations with unknowns a, b and c :

$$
\left\{\begin{aligned}
10 a+7 b+c & =-149 \\
-4 a-7 b+c & =-65 \\
-6 a-b+c & =-37
\end{aligned}\right.
$$

Note that c occurs in each equation with coefficient 1 , so Gaussian elimination will be easier if we treat c as the first variable: say, $x_{1}=c, x_{2}=b, x_{3}=a$. Then

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 7 & 10 & -149 \\
1 & -7 & -4 & -65 \\
1 & -1 & -6 & -37
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 7 & 10 & -149 \\
0 & -14 & -14 & 84 \\
0 & -8 & -16 & 112
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 7 & 10 & -149 \\
0 & 1 & 1 & -6 \\
0 & 1 & 2 & -14
\end{array}\right]} \\
& \quad \rightarrow\left[\begin{array}{rrr|r}
1 & 7 & 10 & -149 \\
0 & 1 & 1 & -6 \\
0 & 0 & 1 & -8
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 7 & 0 & -69 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -8
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 0 & -83 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -8
\end{array}\right]
\end{aligned}
$$

Thus $a=x_{3}=-8, b=x_{2}=2$ and $c=x_{1}=-83$, so the equation of the circle is $x^{2}+y^{2}-8 x+2 y-83=0$. Completing the squares, we get $(x-4)^{2}-16+(y+1)^{2}-1-83=0$, so $(x-4)^{2}+(y+1)^{2}=100$. Thus the centre of the circle is $(4,-1)$ and the radius is 10 .
[3] 2. Calculate $A B$ and $B A$ and determine whether A and B are inverses of each other.
(a) $A=\left[\begin{array}{ccc}2 & 0 & -\frac{1}{2} \\ -1 & 0 & \frac{1}{2}\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 1 \\ -1 & -2 \\ 2 & 4\end{array}\right]$
(b) $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$ and $B=\frac{1}{24}\left[\begin{array}{cccc}24 & 0 & 0 & 0 \\ 0 & 12 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 6\end{array}\right]$

Solution:

(a) Neither A nor B has an inverse since neither is a square matrix. Indeed, we have $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$, but $B A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 1\end{array}\right] \neq I$.
(This cannot happen with square matrices.)
(b) $A B=I=B A$, so A and B are inverses of one another.
[4] 3. Find all values of a for which the following homogeneous system has a nontrivial solution. Also, find all solutions.

$$
\left\{\begin{array}{r}
x-y-2 z=0 \\
x-2 y+a z=0 \\
2 x+a y-5 z=0
\end{array}\right.
$$

Solution: We apply Gaussian elimination to the coefficient matrix of the system (no need to carry an extra column of zeros):

$$
\left[\begin{array}{rrr}
1 & -1 & -2 \\
1 & -2 & a \\
2 & a & -5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & -1 & a+2 \\
0 & a+2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & -1 & a+2 \\
0 & 0 & -1+(a+2)^{2}
\end{array}\right]
$$

This is row echelon form. In order for the homogeneous system to have a nontrivial solution, we need a free variable. If $-1+(a+2)^{2}=0$, then z is a free variable; otherwise there are no free variables. So $(a+2)^{2}=1, a+2= \pm 1$, which gives two values of a : $a=-3$ and $a=-1$.
If $a=-3$, the row echelon form is $\left[\begin{array}{rrr}1 & -1 & -2 \\ 0 & -1 & -1 \\ 0 & 0 & 0\end{array}\right]$, so $z=t$ is a free variable, $y=-z=$ $-t$ and $x=y+2 z=t$. Hence $\mathbf{x}=t\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right], t \in \mathbb{R}$.
If $a=-1$, the row echelon form is $\left[\begin{array}{rrr}1 & -1 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & 0\end{array}\right]$, so $z=t$ is a free variable, $y=z=t$ and $x=y+2 z=3 t$. Hence $\mathbf{x}=t\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], t \in \mathbb{R}$.
[5] 4. For the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$, find A^{-1} if it exists.
Solution:
$\left[\begin{array}{rrr|rrr}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 5 & 6 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & -4 & -15 & -5 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rr}1 & 2 & 3 & 1 & 0 \\ 0 & 0 \\ 0 & 1 & 4 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -5 & 4 & 1\end{array}\right] \longrightarrow$
$\left[\begin{array}{rrr|rrr}1 & 0 & -5 & 1 & -2 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 0 & 1 & -5 & 4 & 1\end{array}\right] \longrightarrow\left[\begin{array}{lll|rrr}1 & 0 & 0 & -24 & 18 & 5 \\ 0 & 1 & 0 & 20 & -15 & -4 \\ 0 & 0 & 1 & -5 & 4 & 1\end{array}\right]$.
Therefore, $A^{-1}=\left[\begin{array}{rrr}-24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1\end{array}\right]$
[3] 5. Given the matrices $A=\left[\begin{array}{cc}2 & -1 \\ -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 4 & 2\end{array}\right]$, find a matrix X such that $A^{-1} X A=B$.

Solution: $X=A B A^{-1}=\left[\begin{array}{cc}2 & -1 \\ -3 & 4\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 4 & 2\end{array}\right] \frac{1}{5}\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]=\left[\begin{array}{cc}-4 & -2 \\ 17 & 7\end{array}\right]$.
6. Given the matrix $C=\left[\begin{array}{cc}-1 & 1 \\ 4 & 2\end{array}\right]$, find a matrix X such that $\left(X^{T}-2 I\right)^{-1}=C$.

Solution: Since $\left(X^{T}-2 I\right)^{-1}=C$, we have $X^{T}-2 I=C^{-1}$ and hence $X^{T}=C^{-1}+2 I$.

Therefore

$$
X=\left(C^{-1}+2 I\right)^{T}=\left(\left[\begin{array}{cc}
-1 & 1 \\
4 & 2
\end{array}\right]^{-1}+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)^{T}=\left(\left[\begin{array}{cc}
-\frac{1}{3} & \frac{1}{6} \\
\frac{2}{3} & \frac{1}{6}
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)^{T}=\left[\begin{array}{cc}
\frac{5}{3} & \frac{2}{3} \\
\frac{1}{6} & \frac{13}{6}
\end{array}\right]
$$

[3] 7. (a) If A and B are invertible $n \times n$ matrices that commute, prove that B and A^{-1} commute.
(b) Let A be an $n \times n$ matrix such that $A^{2}+2 A+I=0$. Prove that A is invertible and find its inverse.
[4] (c) Let $A+I$ be invertible. Show that $(A+I)^{-1}$ and $(I-A)$ commute.

Solution:

(a) By hypothesis, we have $A B=B A$. Now multiplying both sides of this equation on both the right and the left by A^{-1} we obtain: $A^{-1}(A B) A^{-1}=A^{-1}(B A) A^{-1} \Rightarrow$ $B A^{-1}=A^{-1} B$.
(b) The equation satisfied by A can be rewritten as $-A^{2}-2 A=I$. But then, factoring the left hand side yields $A(-A-2 I)=(-A-2 I) A=I$. From this it is clear that A is invertible with inverse $A^{-1}=-A-2 I$.
(c) We have:
$(A+I)(A-I)=A^{2}-A+A-I=A^{2}-I$
$(A-I)(A+I)=A^{2}-A+A-I=A^{2}-I \quad$ So,
$(A+I)(A-I)=(A-I)(A+I)$
Multipling both sudes of this equation on both the right and the left by $(A+I)^{-1}$ gives the required result.
8. Let $A=\left[\begin{array}{rr}-1 & 2 \\ 3 & 1\end{array}\right]$.
(a) Express the matrix A as the product of elementary matrices.
(b) Express the matrix A^{-1} as the product of elementary matrices.

Solution:

(a) $\left[\begin{array}{rr}-1 & 2 \\ 3 & 1\end{array}\right] \rightarrow\left[\begin{array}{rr}1 & -2 \\ 3 & 1\end{array}\right]=E_{1} A \rightarrow\left[\begin{array}{rr}1 & -2 \\ 0 & 7\end{array}\right]=E_{2} E_{1} A$

$$
\rightarrow\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right]=E_{3} E_{2} E_{1} A \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I=E_{4} E_{3} E_{2} E_{1} A
$$

where

$$
E_{1}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{rr}
1 & 0 \\
-3 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{7}
\end{array}\right], \quad E_{4}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

Thus

$$
A=\left(E_{4} E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 7
\end{array}\right]\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right]
$$

(b) $A^{-1}=E_{4} E_{3} E_{2} E_{1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & \frac{1}{7}\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ -3 & 1\end{array}\right]\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$.

