Due: Wed, November 1
[5] 1. For what value of c does

$$
\begin{aligned}
x+y+2 z & =2 \\
-x+y+z & =c \\
4 x+2 z & =2
\end{aligned}
$$

have a solution? Is it unique?
[20] 2. Write all solutions of the following linear systems in vector form.
(a)

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3}+3 x_{4} & =4 \\
x_{2}+2 x_{4} & =1 \\
x_{1}+x_{2}-x_{4} & =3
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x+2 y+4 z=3 \\
& x+2 y+6 z=5 \\
& x+3 y+5 z=4
\end{aligned}
$$

(c)

$$
\begin{aligned}
x+5 y-2 z & =-2 \\
3 x+15 y-6 z & =-6 \\
-x-5 y+2 z & =2
\end{aligned}
$$

(d)

$$
\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 \\
0 & -3 & 6 & -3 & 0 \\
0 & 0 & 4 & -8 & 4 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

[5] 3. Find conditions on a, b, and c (if any) such that the system

$$
\begin{aligned}
x+z & =-1 \\
2 x-y & =2 \\
y+2 z & =-4 \\
a x+b y+c z & =3
\end{aligned}
$$

has (i) no solution, (ii) a unique solution, and (iii) infinitely many solutions.
[10] 4. Find all solutions of

$$
\begin{aligned}
x+3 y & =0 \\
x+4 y+5 z & =0 \\
2 y+10 z & =0
\end{aligned}
$$

Does

$$
\begin{aligned}
x+3 y & =\pi \\
x+4 y+5 z & =\sqrt{17 / 19} \\
2 y+10 z & =e^{-\sqrt{2}}
\end{aligned}
$$

have a unique solution?
[5] 5. Show that the vectors $\vec{u}=\left[\begin{array}{c}1 \\ 3 \\ -1 \\ -2\end{array}\right], \vec{v}=\left[\begin{array}{l}2 \\ 6 \\ 0 \\ 4\end{array}\right]$, and $\vec{w}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 6\end{array}\right]$ are linearly independent.
[5] 6. For what values of x (if any) are the vectors $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{v}=\left[\begin{array}{c}-1 \\ -1 \\ x-3\end{array}\right]$, and $\vec{w}=\left[\begin{array}{c}1 \\ -1 \\ 3 x^{2}-3\end{array}\right]$ linearly independent?

