[5] 1. For what value of c does

$$
\begin{aligned}
x+y+2 z & =2 \\
-x+y+z & =c \\
4 x+2 z & =2
\end{aligned}
$$

have a solution? Is it unique?
Solution: Writing the system as an augmented matrix, we have

$$
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 2 \\
-1 & 1 & 1 & c \\
4 & 0 & 2 & 2
\end{array}\right] \xrightarrow{\substack{R 2 \leftarrow R 2+R 1 \\
R 3 \leftarrow R 3-4 R 1}}\left[\begin{array}{rrr|r}
1 & 1 & 2 & 2 \\
0 & 2 & 3 & c+2 \\
0 & -4 & -6 & -6
\end{array}\right] \xrightarrow{R 3 \leftarrow R 3+2 R 2}\left[\begin{array}{lll|l}
1 & 1 & 2 & 2 \\
0 & 2 & 3 & c+2 \\
0 & 0 & 0 & -6+2(c+2)
\end{array}\right]
$$

Thus, the system has a solution only when $-6+2(c+2)=0$ or $c=1$, so that the last equation is consistent. The solution will not be unique, however, since there is a free variable in the row echelon form.
[20] 2. Write all solutions of the following linear systems in vector form.
(a)

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3}+3 x_{4} & =4 \\
x_{2}+2 x_{4} & =1 \\
x_{1}+x_{2}-x_{4} & =3
\end{aligned}
$$

Solution:

$$
\left[\begin{array}{rrrr|r}
1 & 2 & -1 & 3 & 4 \\
0 & 1 & 0 & 2 & 1 \\
1 & 1 & 0 & -1 & 3
\end{array}\right] \xrightarrow{R 3 \leftarrow R 3-R 1}\left[\begin{array}{rrrr|r}
1 & 2 & -1 & 3 & 4 \\
0 & 1 & 0 & 2 & 1 \\
0 & -1 & 1 & -4 & -1
\end{array}\right] \xrightarrow{R 3 \leftarrow R 3+R 2}\left[\begin{array}{rrrr|r}
1 & 2 & -1 & 3 & 4 \\
0 & 1 & 0 & 2 & 1 \\
0 & 0 & 1 & -2 & 0
\end{array}\right]
$$

Thus, we see that $x_{4}=t$ is a free variable, giving $x_{3}=0+2 t, x_{2}=1-2 t$, and $x_{1}=4-2 x_{2}+x_{3}-3 x_{4}=2+3 t$. Writing this in vector form, we have

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-2 \\
2 \\
1
\end{array}\right]
$$

(b)

$$
\begin{aligned}
& x+2 y+4 z=3 \\
& x+2 y+6 z=5 \\
& x+3 y+5 z=4
\end{aligned}
$$

Solution:

$$
\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
1 & 2 & 6 & 5 \\
1 & 3 & 5 & 4
\end{array}\right] \xrightarrow{\substack{R 2 \leftarrow R 2-R 1 \\
R 3 \leftarrow R 3-R 1}}\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 0 & 2 & 2 \\
0 & 1 & 1 & 1
\end{array}\right] \xrightarrow{R 2 \leftrightarrow R 3}\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2
\end{array}\right]
$$

This gives $z=1, y=0$, and $x=3-2 y-4 z=-1$, so $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
(c)

$$
\begin{aligned}
x+5 y-2 z & =-2 \\
3 x+15 y-6 z & =-6 \\
-x-5 y+2 z & =2
\end{aligned}
$$

Solution:

$$
\left[\begin{array}{rrr|r}
1 & 5 & -2 & -2 \\
3 & 15 & -6 & -6 \\
-1 & -5 & 2 & 2
\end{array}\right] \xrightarrow{\substack{R 2 \leftarrow R 2-3 R 1 \\
R 3 \leftarrow R 3+R 1}}\left[\begin{array}{rrr|r}
1 & 5 & -2 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So, both y and z are free variables. Taking $y=s$ and $z=t$, we have $x=$ $-2-5 s+2 t$, giving

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-5 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 \\
0 & -3 & 6 & -3 & 0 \\
0 & 0 & 4 & -8 & 4 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
2 & -1 & 0 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 & 0 \\
0 & -3 & 6 & -3 & 0 & 0 \\
0 & 0 & 4 & -8 & 4 & 0 \\
0 & 0 & 0 & -1 & 1 & 1
\end{array}\right] \xrightarrow{R 2 \leftarrow R 2+R 1}\left[\begin{array}{ccccc|c}
2 & -1 & 0 & 0 & 0 & 0 \\
0 & 3 & -2 & 0 & 0 & 0 \\
0 & -3 & 6 & -3 & 0 & 0 \\
0 & 0 & 4 & -8 & 4 & 0 \\
0 & 0 & 0 & -1 & 1 & 1
\end{array}\right] \xrightarrow{R 3 \leftarrow R 3+R 2}\left[\begin{array}{ccccc|c}
2 & -1 & 0 & 0 & 0 & 0 \\
0 & 3 & -2 & 0 & 0 & 0 \\
0 & 0 & 4 & -3 & 0 & 0 \\
0 & 0 & 4 & -8 & 4 & 0 \\
0 & 0 & 0 & -1 & 1 & 1
\end{array}\right]} \\
& \xrightarrow{R 4 \leftarrow R 4-R 3}\left[\begin{array}{ccccc|c}
2 & -1 & 0 & 0 & 0 & 0 \\
0 & 3 & -2 & 0 & 0 & 0 \\
0 & 0 & 4 & -3 & 0 & 0 \\
0 & 0 & 0 & -5 & 4 & 0 \\
0 & 0 & 0 & -1 & 1 & 1
\end{array}\right] \xrightarrow{R 5 \leftarrow 5 R 5}\left[\begin{array}{ccccc|c}
2 & -1 & 0 & 0 & 0 & 0 \\
0 & 3 & -2 & 0 & 0 & 0 \\
0 & 0 & 4 & -3 & 0 & 0 \\
0 & 0 & 0 & -5 & 4 & 0 \\
0 & 0 & 0 & -5 & 5 & 5
\end{array}\right] \\
& \xrightarrow{R 5 \leftarrow R 5-R 4}\left[\begin{array}{ccccc|c}
2 & -1 & 0 & 0 & 0 & 0 \\
0 & 3 & -2 & 0 & 0 & 0 \\
0 & 0 & 4 & -3 & 0 & 0 \\
0 & 0 & 0 & -5 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

Solving, this gives $x_{5}=5, x_{4}=4, x_{3}=3, x_{2}=2$, and $x_{1}=1$, or

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right] .
$$

[5] 3. Find conditions on a, b, and c (if any) such that the system

$$
\begin{aligned}
x+z & =-1 \\
2 x-y & =2 \\
y+2 z & =-4 \\
a x+b y+c z & =3
\end{aligned}
$$

has (i) no solution, (ii) a unique solution, and (iii) infinitely many solutions.
Solution: Working from the augmented matrix of the system, we have

$$
\left.\begin{array}{c}
{\left[\begin{array}{rrr|r}
1 & 0 & 1 & -1 \\
2 & -1 & 0 & 2 \\
0 & 1 & 2 & -4 \\
a & b & c & 3
\end{array}\right] \xrightarrow{\substack{R 2 \leftarrow R 2-2 R 1 \\
R 4 \leftarrow R 4-a R 1}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & -1 \\
0 & -1 & -2 & 4 \\
0 & 1 & 2 & -4 \\
0 & b & c-a & 3+a
\end{array}\right]} \\
\xrightarrow{\substack{R 2 \leftarrow-R 2 \\
R 3 \leftarrow R 3+R 2}}\left[\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & (c-a)-2 b & (3+a)+4 b
\end{array}\right] \xrightarrow{R 3 \leftrightarrow R 2}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & (c-a)-2 b \\
0 & 0 & 0
\end{array}\right. \\
(3+a)+4 b \\
\end{array}\right] .
$$

This is row echelon form.
(i) If $c-a-2 b=0$ and $3+a+4 b \neq 0$, the third equation says $0=3+a+4 b$, which is a contradiction. There is no solution in this case.
(ii) If $c-a-2 b \neq 0$, there is a unique solution: $z=\frac{3+a+4 b}{c-a-2 b}, y=-4-2 z, x=-1-z$.
(iii) If $c-a+2 b=0$ and $3+a+4 b=0$, then the row echelon form is $\left[\begin{array}{rrr|r}1 & 0 & 1 & -1 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, so $z=t$ is a free variable, and there are infinitely many solutions.
[10] 4. Find all solutions of

$$
\begin{aligned}
x+3 y & =0 \\
x+4 y+5 z & =0 \\
2 y+10 z & =0
\end{aligned}
$$

Does

$$
\begin{aligned}
x+3 y & =\pi \\
x+4 y+5 z & =\sqrt{17 / 19} \\
2 y+10 z & =e^{-\sqrt{2}}
\end{aligned}
$$

have a unique solution?
Solution: First we put the system matrix in row echelon form

$$
\left[\begin{array}{ccc}
1 & 3 & 0 \\
1 & 4 & 5 \\
0 & 2 & 10
\end{array}\right] \xrightarrow{R 2 \leftarrow R 2-R 1}\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & 1 & 5 \\
0 & 2 & 10
\end{array}\right] \xrightarrow{R 3 \leftarrow R 3-2 R 2}\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right] .
$$

Since this has only 2 pivot columns, we introduce $z=t$ as a free variable, giving $y=-5 t$, and $x=15 t$. Thus, solutions are of the form

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{c}
15 \\
-5 \\
1
\end{array}\right]
$$

For the non-homogeneous system, we know that if x, y, and z solve the given system, then so do $x+15 t, y-5 t, z+t$ for any value of t. Thus, it does not have a unique solution.
[5] 5. Show that the vectors $\vec{u}=\left[\begin{array}{c}1 \\ 3 \\ -1 \\ -2\end{array}\right], \vec{v}=\left[\begin{array}{l}2 \\ 6 \\ 0 \\ 4\end{array}\right]$, and $\vec{w}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 6\end{array}\right]$ are linearly independent.

Solution: The vectors are linearly independent if and only if the only solution of the homogeneous system, $A \vec{x}=\overrightarrow{0}$, with these vectors as columns of the matrix, A, is the trivial solution. So, we put A into row echelon form:

$$
\left[\begin{array}{rrr}
1 & 2 & 1 \\
3 & 6 & -1 \\
-1 & 0 & 1 \\
-2 & 4 & 6
\end{array}\right] \xrightarrow{\substack{R 2 \leftrightarrow R 2-3 R 1 \\
R 4 \leftarrow R 4+2 R 1}}\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 0 & -4 \\
0 & 2 & 2 \\
0 & 8 & 8
\end{array}\right] \xrightarrow{R 2 \leftrightarrow R 3}\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 2 & 2 \\
0 & 0 & -4 \\
0 & 8 & 8
\end{array}\right] \xrightarrow{R 4 \leftarrow R 4-4 R 2}\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 2 & 2 \\
0 & 0 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

Since the row echelon form of the matrix has 3 pivot columns, there are no free variables and, thus, the unique solution of $A \vec{x}=\overrightarrow{0}$ is $\vec{x}=\overrightarrow{0}$. This means that the vectors that make up the columns of A are linearly independent.
[5] 6. For what values of x (if any) are the vectors $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{v}=\left[\begin{array}{c}-1 \\ -1 \\ x-3\end{array}\right]$, and $\vec{w}=\left[\begin{array}{c}1 \\ -1 \\ 3 x^{2}-3\end{array}\right]$ linearly independent?
Solution: The vectors are linearly independent if and only if the only solution of the homogeneous system, $A \vec{x}=\overrightarrow{0}$, with these vectors as columns of the matrix, A, is the trivial solution. So, we put A into row echelon form:

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & -1 \\
3 & x-3 & 3 x^{2}-3
\end{array}\right] \xrightarrow{\substack{R 2 \leftarrow R 2-2 R 1 \\
R 3 \leftarrow R 3-3 R 1}}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -3 \\
0 & x & 3 x^{2}-6
\end{array}\right] \xrightarrow{R 3 \leftarrow R 3-x R 2}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 3 x^{2}+3 x-6
\end{array}\right]
$$

This system will have 3 pivot columns only when $3 x^{2}+3 x-6 \neq 0$ and, consequently, the vectors will be linearly independent when $3 x^{2}+3 x-6 \neq 0$.

Solving $3 x^{2}+3 x-6=0$ we have $x=-2$ and $x=1$. Thus, the vectors are linearly independent for all values of x except for $x=-2$ and $x=1$.

