Due: Oct. 25
[5] 1. Write down the 2×3 matrix $A=\left[a_{i j}\right]$ with $a_{i j}=i j-\cos \frac{\pi j}{3}$.
[12] 2. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$.
i) Compute $A B,(A B)^{T}, A^{T} B^{T}$ and $B^{T} A^{T}$. Do you have $(A B)^{T}=B^{T} A^{T}$?
ii) Compute $(A+B)^{2}$ and $A^{2}+2 A B+B^{2}$. Are these equal? What is the correct expansion of $(A+B)^{2}$?
iii) Compute $A B-2 B$ and $\left(A-2 I_{2}\right) B$. Are they equal?
[5] 3. Find the matrix A if : $\left(3 A^{T}+2\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\right)^{T}=\left[\begin{array}{ll}8 & 0 \\ 3 & 1\end{array}\right]$
[6] 4. Compute the following matrix products.
(a) $\left[\begin{array}{r}1 \\ -1\end{array}\right]\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]$
(b) $\left[\begin{array}{rrr}5 & 0 & -7 \\ 1 & 5 & 9\end{array}\right]\left[\begin{array}{rrr}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]$
[6] 5. Give an example with two matrices A and B such that $A B=0$ does not imply that $A=0$ or $B=0$.
[5] 6. Express the system

$$
\left\{\begin{array}{l}
x+10 z=5 \\
3 x+y-4 z=-1 \\
4 x+y+6 z=1
\end{array}\right.
$$

in the form of $A X=b$.
[6] 7. Write $-2\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]+0\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right]-\left[\begin{array}{l}4 \\ 2 \\ 7\end{array}\right]+3\left[\begin{array}{l}6 \\ 5 \\ 4\end{array}\right]$ in the form of $A X$ for a suitable
matrix A and vector X .
[5] 8. Suppose a matrix A satisfies $A=2 A^{T}$. Show that necessarily $A=0$.

