[5] 1. Write down the 2×3 matrix $A=\left[a_{i j}\right]$ with $a_{i j}=i j-\cos \frac{\pi j}{3}$.
Solution: $A=\left[\begin{array}{lll}1 / 2 & 5 / 2 & 4 \\ 3 / 2 & 9 / 2 & 7\end{array}\right]$.
[12] 2. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$.
i) Compute $A B,(A B)^{T}, A^{T} B^{T}$ and $B^{T} A^{T}$. Do you have $(A B)^{T}=B^{T} A^{T}$?

Solution: $A B=\left[\begin{array}{ll}1 & 6 \\ 2 & 7\end{array}\right],(A B)^{T}=\left[\begin{array}{ll}1 & 2 \\ 6 & 7\end{array}\right], A^{T} B^{T}=\left[\begin{array}{ll}7 & 2 \\ 6 & 1\end{array}\right]$
and $B^{T} A^{T}=\left[\begin{array}{ll}1 & 2 \\ 6 & 7\end{array}\right]$.
Therefore we have $(A B)^{T}=B^{T} A^{T}$ not $(A B)^{T}=A^{T} B^{T}$
ii) Compute $(A+B)^{2}$ and $A^{2}+2 A B+B^{2}$. Are these equal? What is the correct expansion of $(A+B)^{2}$?
Solution: $(A+B)^{2}=\left[\begin{array}{ll}16 & 24 \\ 8 & 16\end{array}\right]$.
$A^{2}+2 A B+B^{2}=\left[\begin{array}{ll}10 & 24 \\ 8 & 22\end{array}\right]$.
They are not equal. The correct answer is $(A+B)^{2}=A^{2}+A B+B A+B^{2}$.
iii) Compute $A B-2 B$ and $\left(A-2 I_{2}\right) B$. Are they equal?
solution: $A B-2 B=\left[\begin{array}{ll}-1 & 0 \\ 2 & 5\end{array}\right] . \quad\left(A-2 I_{2}\right) B=\left[\begin{array}{ll}-1 & 0 \\ 2 & 5\end{array}\right]$.
Yes, they are equal.
[5] 3. Find the matrix A if : $\left(3 A^{T}+2\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\right)^{T}=\left[\begin{array}{ll}8 & 0 \\ 3 & 1\end{array}\right]$
Solution: $\left(3 A^{T}+2\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\right)^{T}=\left[\begin{array}{ll}8 & 0 \\ 3 & 1\end{array}\right] \Longrightarrow$
$\left(3 A^{T}\right)^{T}+\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]^{T}=\left[\begin{array}{ll}8 & 0 \\ 3 & 1\end{array}\right]$
$3 A+\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]=\left[\begin{array}{ll}8 & 0 \\ 3 & 1\end{array}\right]$
$3 A=\left[\begin{array}{rr}6 & 0 \\ 3 & -3\end{array}\right] \Rightarrow A=\frac{1}{3}\left[\begin{array}{rr}6 & 0 \\ 3 & -3\end{array}\right]=\left[\begin{array}{rr}2 & 0 \\ 1 & -1\end{array}\right]$.
OR: We can obtain $3 A^{T}+\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]=\left[\begin{array}{ll}8 & 0 \\ 3 & 1\end{array}\right]^{T}=\left[\begin{array}{ll}8 & 3 \\ 0 & 1\end{array}\right] \Longrightarrow$
$3 A^{T}=\left[\begin{array}{rr}6 & 3 \\ 0 & -3\end{array}\right] \quad A^{T}=\left[\begin{array}{rr}2 & 1 \\ 0 & -1\end{array}\right], \Longrightarrow A=\left[\begin{array}{rr}2 & 0 \\ 1 & -1\end{array}\right]$
[6] 4. Compute the following matrix products.
(a) $\left[\begin{array}{r}1 \\ -1\end{array}\right]\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]$
(b) $\left[\begin{array}{rrr}5 & 0 & -7 \\ 1 & 5 & 9\end{array}\right]\left[\begin{array}{rrr}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]$

Solution: (a) $\left[\begin{array}{r}1 \\ -1\end{array}\right]\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]=\left[\begin{array}{rrr}2 & 1 & 3 \\ -2 & -1 & -3\end{array}\right]$
(b) $\left[\begin{array}{rrr}5 & 0 & -7 \\ 1 & 5 & 9\end{array}\right]\left[\begin{array}{rrr}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]=\left[\begin{array}{rrr}17 & 15 & -9 \\ -2 & 48 & 54\end{array}\right]$.
[6] 5. Give an example with two matrices A and B such that $A B=0$ does not imply that $A=0$ or $B=0$.
For example, $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], \Longrightarrow A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
$A B$ is the zero matrix, but neither A or B is zero matrix.
[5] 6. Express the system

$$
\left\{\begin{array}{l}
x+10 z=5 \\
3 x+y-4 z=-1 \\
4 x+y+6 z=1
\end{array}\right.
$$

in the form of $A X=b$.
Solution: $A=\left[\begin{array}{lll}1 & 0 & 10 \\ 3 & 1 & -4 \\ 4 & 1 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], b=\left[\begin{array}{l}5 \\ -1 \\ 1\end{array}\right]$
[6] 7. Write $-2\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]+0\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right]-\left[\begin{array}{l}4 \\ 2 \\ 7\end{array}\right]+3\left[\begin{array}{l}6 \\ 5 \\ 4\end{array}\right]$ in the form of $A X$ for a suitable matrix A and vector X .
Solution: $A=\left[\begin{array}{lllll}1 & 2 & -3 & 4 & 6 \\ 1 & 0 & 1 & 2 & 5 \\ -2 & 1 & 1 & 7 & 4\end{array}\right], X=\left[\begin{array}{l}-2 \\ 0 \\ 1 \\ -1 \\ 3\end{array}\right]$
[5] 8. Suppose a matrix A satisfies $A=2 A^{T}$. Show that necessarily $A=0$.
Solution: Suppose $A=2 A^{T}$. We need to show that $A=0$.
Now, $A=2 A^{T}=2\left[2 A^{T}\right]^{T}=4\left[\left(A^{T}\right)^{T}\right]=4 A$. Hence, $3 A=0$. So, $A=\frac{1}{3}(3 A)=\frac{1}{3}(0)=$ 0

