MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH2050 Assignment 4

Due: Wednesday 11 October

[6] 1 . Let $\ell_{1}, \ell_{2}, \ell_{3}$ and ℓ_{4} be lines given by the following equations.

$$
\begin{array}{ll}
\ell_{1}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+t_{1}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] & \ell_{2}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-3 \\
3
\end{array}\right]+t_{2}\left[\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right] \\
\ell_{3}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+t_{3}\left[\begin{array}{c}
-2 \\
4 \\
1
\end{array}\right] & \ell_{4}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
7 \\
-1
\end{array}\right]+t_{4}\left[\begin{array}{c}
-6 \\
-4 \\
6
\end{array}\right]
\end{array}
$$

Determine whether the following pairs of lines are parallel, skew, or if they intersect. In each case explain your answer and find the intersection if it exists.
(a) ℓ_{1} and ℓ_{2}.
(b) ℓ_{1} and ℓ_{3}.
(c) ℓ_{2} and ℓ_{4}.
[6] 2. Let ℓ be the line with equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]+t\left[\begin{array}{c}-4 \\ 1 \\ 3\end{array}\right]$.
(a) Find the distance from $P(2,-1,5)$ to ℓ.
(b) Find the point of ℓ closest to P.
[6] 3. (a) Find two orthogonal vectors in the plane π given by the equation $2 x-3 y+4 x=0$.
(b) Given the vector $\vec{w}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, find a vector \vec{p} on the plane π such that $\vec{w}-\vec{p}$ is orthogonal to every vector on π.
[4] 4. Let $\vec{u}=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$. Find $\operatorname{proj}_{\vec{u}} \vec{v}$ and $\operatorname{proj}_{\vec{v}} \vec{u}$.
[6] 5. Given $P(1,1,3)$ and a plane π with equation $x+3 y-z=7$.
(a) Find the distance from point P to the plane π.
(b) Find the point on π closest to P.
[4] 6. Describe in geometrical terms the set of all points one unit away from the plane with equation $2 x-2 y+z=3$. Find an equation for this set of points.
[2] 7. Suppose vectors \vec{u} and \vec{v} are linearly independent. Show that the vectors $\vec{w}=\vec{u}-\vec{v}$ and $\vec{z}=\vec{u}+3 \vec{v}$ are also linearly independent.
[6] 8. Determine whether or not the following sets of vectors are linearly independent or linearly dependent. If the vectors are linearly dependent then give an example of a nontrivial linear combination of the vectors which equals the zero vector.
(a) $\vec{u}=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \quad \vec{w}=\left[\begin{array}{l}5 \\ 6 \\ 9\end{array}\right]$
(b) $\vec{u}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right], \quad \vec{w}=\left[\begin{array}{c}7 \\ -3 \\ 1\end{array}\right]$
(c) $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}, \overrightarrow{0}$

