MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Due: October 4, 2017 . SHOW ALL WORK

[3] 1. Find the equation of a plane with x-intercept $=1, y$-intercept $=2$ and z-intercept $=-3$.
Solution: The scalar equation of a plane is given by $a x+b y+c z=d$. The intercepts $(1,0,0),(0,1,0)$ and $(0,0,1)$ are all contained in the plane and hence satisfy the equation of the plane.

Therefore, x -int $=1 \Rightarrow a=d, \quad \mathrm{y}$-int $=2 \Rightarrow 2 b=d, \quad$ and z int $=-3 \Rightarrow-3 c=d$.
Hence, substituting these values into the equation of the plane we obtain:
$d x+\frac{d}{2} y-\frac{d}{3} z=d \Rightarrow x+\frac{y}{2}-\frac{z}{3}=1 \Rightarrow 6 x+3 y-2 z=6$ is the equation of the required plane.
[3] 2. Find two vectors of length 3 which are perpendicular to both $\vec{u}=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]$ and $\vec{v}=$ $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$.
Solution: A vector perpendicular to both \vec{u} and \vec{v} is $\vec{u} \times \vec{v}=\left|\begin{array}{rrr}\vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 3 \\ 1 & -2 & 1\end{array}\right|=5 \vec{i}+\vec{j}-3 \vec{k}$. $\|\vec{u} \times \vec{v}\|=\sqrt{35}$ and so $\frac{1}{\sqrt{35}}\left[\begin{array}{r}5 \\ 1 \\ -3\end{array}\right]$ is a unit vector perpendicular to both \vec{u} and \vec{v}.
The vector $\frac{3}{\sqrt{35}}\left[\begin{array}{r}5 \\ 1 \\ -3\end{array}\right]$ is a vector of length 3 perpendicular to both \vec{u} and \vec{v}. Another one would be $-\frac{3}{\sqrt{35}}\left[\begin{array}{r}5 \\ 1 \\ -3\end{array}\right]$.
[4] 3. Given $\|\vec{u}\|=10,\|\vec{v}\|=14$ and $\|\vec{u} \times \vec{v}\|=70$, find all possible values of $\vec{u} \cdot \vec{v}$.
Solution: $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta \Rightarrow 70=10 \cdot 14 \sin \theta \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$.
Now, $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$. Hence, there are two possibilities:
$\vec{u} \cdot \vec{v}=10 \cdot 14 \cos \frac{\pi}{6}$ or $\vec{u} \cdot \vec{v}=10 \cdot 14 \cos \frac{5 \pi}{6} \Rightarrow \vec{u} \cdot \vec{v}=70 \sqrt{3}$ or $-70 \sqrt{3}$.
4. Find the equation of the following planes.
[3] [3]
(a) the plane passing through the point $(0,1,2)$ and containing the line $x=y=z$.
(b) Find an equation describing the plane which goes through the point $(1,3,5)$ and is perpen- dicular to the vector $\vec{u}=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]$

Solution: (a) Name $Q(0,1,2)$. The line can be represented as $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ which crosses the point $P(0,0,0)$ and is parallel to $\vec{d}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Set $\overrightarrow{P Q}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. Now choose $\vec{n}=\vec{d} \times \overrightarrow{P Q}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right|=\vec{i}-2 \vec{j}+\vec{k}$ and hence equation of the plane is $x-2 y+z=0$ using the point $P(0,0,0)$.
(b) Choose $\vec{n}=\vec{u}$ since the two vectors are parallel. Hence, the equation of the required plane is $2 x-y+3 z=d$. Since the plane passes through the point $P(1,3,5)$, $2(0)-1+3(2)=d \Rightarrow d=14$. Therefore, the equation of the plane is $2 x-y+3 z=14$.
5. Consider the points $A(1,-2,1), B(2,-2,-1)$ and $C(4,1,1)$.
(a) Find the equation of the plane passing through A, B, and C.
(b) Find the area of the triangle ABC.

Solution: (a) $\overrightarrow{A B}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$ and $\overrightarrow{A C}=\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]$.
$\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}\vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -2 \\ 3 & 3 & 0\end{array}\right|=6 \vec{i}-6 \vec{j}+3 \vec{k}$. Take $\vec{n}=2 \vec{i}-2 \vec{j}+\vec{k}$. Hence, equation of the required plane takes the form: $2 x-2 y+z=d$. Using the point $A(1,-2,1)$, we get $d=7$. Therefore, $2 x-2 y+z=7$ is the equation of the requred plane.
(b)

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\| \\
& =\frac{1}{2}\left\|\left[\begin{array}{r}
6 \\
-6 \\
3
\end{array}\right]\right\| \\
& =\frac{9}{2}
\end{aligned}
$$

[4] 6. Find the intersection of the line $x=t, y=2 t, z=3 t$, and the plane $x+y+z=1$.

Solution: Substituting $x=t, y=2 t$ and $z=3 t$ into the equation of the plane, we obtain: $t+2 t+3 t=1 \Rightarrow 6 t=1 \Rightarrow t=\frac{1}{6}$ and the coordinates of the point of intdersection are $P(1 / 6,1 / 3,1 / 2)$.
[4] 7. Let ℓ_{1} be the line with parametric equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+\mathrm{t}\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$ and ℓ_{2} be the line described parametrically by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+\mathrm{s}\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$. How many planes are there which contain ℓ_{2} and are parallel to ℓ_{1} ? Find an equation describing one such plane.

Solution: Let $\overrightarrow{d_{1}}$ be the direction vector of the line ℓ_{1} and let ℓ_{2} be the direction vector of the line ℓ_{2}. Clearly, the lines ℓ_{1} and ℓ_{2} are not parallel since d_{1} is not parallel to d_{2}. Hence, there is only one such plane and it must also be parallel to both $\overrightarrow{d_{1}}$ and \vec{d}_{2}. That is the plane is orthogonal to $\vec{d}_{1} \times \overrightarrow{d_{2}}=\left|\begin{array}{rrr}\vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -1 \\ 0 & 3 & 1\end{array}\right|=3 \vec{i}-\vec{j}+3 \vec{k}$. That is, $\vec{n}=3 \vec{i}-\vec{j}+3 \vec{k}$.
The equation of the required plane has the equation $3 x-y+3 z=d$. Moreover, the plane passes through the point $P(2,1,0)$. Hence, $3(2)-1+3(0)=d$. That is $d=5$ and the equation of the plane is $3 x-y+3 z=5$.
[4] 8. Find the foot of the perpendicular from the point $P(1,-2,3)$ to the plane $\pi: 3 x+2 y-z=$ 10

Solution: Let Q be the foot of the perpendicular from $P(1,-2,3)$ to the plane π : $3 x+2 y-z=10$. The line $\ell_{P Q}$ lies in the direction of the normal $\vec{n}=3 \vec{i}+2 \vec{j}-\vec{k}$ and passes through the point $P(1,-2,3)$. Hence the equation of the line through $P Q$ is given by:
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right]+t\left[\begin{array}{r}3 \\ 2 \\ -1\end{array}\right]$ and the parametric equations are $x=1+3 t, y=-2+2 t$
and $z=3-t$. The intersection of this line with with the plane will be the point Q. The point on the line $\ell_{P Q}$ with parameter t lies on the plane $3 x+2 y-z=10$ if
$3(1+3 t)+2(-2+2 t)-(3-t)=10 \Rightarrow t=1$. Therefore, the coordinates of Q are:

$$
\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right]+\left[\begin{array}{r}
3 \\
2 \\
-1
\end{array}\right] \text { or } Q(4,0,2)
$$

[4] 9. The line lying on the planes $x+y+z=2$ and $3 x-4 y+5 z=6$

Solution: The direction vector of this line lies in both planes, so it is ortogonal to both of the normals $\overrightarrow{n_{1}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\overrightarrow{n_{2}}=\left[\begin{array}{r}3 \\ -4 \\ 5\end{array}\right]$. Hence, $\vec{d}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{rrr}\vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 3 & -4 & 5\end{array}\right|=$ $9 \vec{i}-2 \vec{j}-7 \vec{k}$. Now we need to find a point on this line which is contained on both planes. We let $z=0$ and solve for x and y. That is $x+y=2$ and $3 x-4 y=6 \Rightarrow x=0, y=$ 0 and $z=0$. Therefore, $P(2,0,0)$ is a point on the line. Hence, equation of the required line is: $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{r}9 \\ -2 \\ -7\end{array}\right]$

