Math 2050 Assignment 1, Due September 20, 2017
[3] 1. If $B=(1,-4,3)$ and $\overrightarrow{A B}=\left[\begin{array}{l}-1 \\ 2 \\ 5\end{array}\right]$, find A.
[4] 2. Given $\vec{u}=\left[\begin{array}{l}-2 \\ 2\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ -4\end{array}\right]$, find $\vec{u}-\vec{v}$ and illustrate the subtraction with a picture.
[6] 3. Let $\vec{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ -1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}2 \\ 0 \\ -2\end{array}\right]$ and $\vec{u}_{4}=\left[\begin{array}{l}5 \\ 10 \\ 3\end{array}\right]$
Are \vec{u}_{1} and \vec{u}_{2} parallel? \vec{u}_{1} and \vec{u}_{3} ? \vec{u}_{1} and \vec{u}_{4} ?
[5] 4. Let $P_{1}(2,-3,6)$ and $P_{2}(2,2,-4)$. Find the coordinates of the point P on the line segment from P_{1} to P_{2} such that $\overrightarrow{P_{1} P}=\frac{2}{5} \overrightarrow{P P_{2}}$.
[6] 5. Express each of the following as a single vector.
(a) $3\left[\begin{array}{l}1 \\ 0 \\ -2\end{array}\right]-4\left[\begin{array}{l}6 \\ 1 \\ 5\end{array}\right]+2\left[\begin{array}{l}-1 \\ 1 \\ 2\end{array}\right]$
(b) $a\left[\begin{array}{l}-1 \\ 5\end{array}\right]-3\left[\begin{array}{l}-a \\ 2\end{array}\right]$
[6] 6. In each of the following cases, either express \vec{p} as a linear combination of $\vec{u}, \vec{v}, \vec{w}$ or explain why there is no such linear combination.
(a) $\vec{p}=\left[\begin{array}{l}-4 \\ 7 \\ 5 \\ 0\end{array}\right], \vec{u}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{w}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
(b) $\vec{p}=\left[\begin{array}{l}-1 \\ 2 \\ 4\end{array}\right], \vec{u}=\left[\begin{array}{l}3 \\ 7 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right], \vec{w}=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$
[4] 7. Suppose $\vec{u}=\left[\begin{array}{c}a \\ -5\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ 6-b\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Find a and b such that $2 \vec{u}-3 \vec{v}+5 \vec{w}=\overrightarrow{0}$.
[5] 8. Use vectors to show that the mid-point of the line joining $A\left(x_{1}, x_{2}, x_{3}\right)$ to $B\left(y_{1}, y_{2}, y_{3}\right)$ is the point $C\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}, \frac{x_{3}+y_{3}}{2}\right)$.
[6] 9. Given three points $A(-1,0), B(2,3), C(4,-1)$ in the plane, find all points D such that ABCD are the vertices of a parallelogram. (hint: three possible locations for D).
[5] 10. Let $\vec{u}=\left[\begin{array}{r}-3 \\ 2 \\ 1\end{array}\right], \vec{v}=\left[\begin{array}{r}5 \\ 0 \\ -3\end{array}\right]$ and $\vec{w}=\left[\begin{array}{r}6 \\ 1 \\ -4\end{array}\right]$. Is it possible to find a scalar t such that $\vec{u}+t \vec{v}$ is parallel to \vec{w}.

