Math 2050 Assignment 1, Due September 20, 2017

[3] 1. If
$$B = (1, -4, 3)$$
 and $\vec{AB} = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$, find A .

[4] 2. Given $\vec{u} = \begin{bmatrix} -2\\2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1\\-4 \end{bmatrix}$, find $\vec{u} - \vec{v}$ and illustrate the subtraction with a picture.

$$\begin{bmatrix} 6 \end{bmatrix} \quad 3. \text{ Let } \vec{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \text{ and } \vec{u}_4 = \begin{bmatrix} 5 \\ 10 \\ 3 \end{bmatrix}$$

Are \vec{u}_1 and \vec{u}_2 parallel? \vec{u}_1 and \vec{u}_3 ? \vec{u}_1 and \vec{u}_4 ?

[5] 4. Let $P_1(2, -3, 6)$ and $P_2(2, 2, -4)$. Find the coordinates of the point P on the line segment from P_1 to P_2 such that $\overrightarrow{P_1P} = \frac{2}{5}\overrightarrow{PP_2}$.

[6] 5. Express each of the following as a single vector.

(a)
$$3\begin{bmatrix}1\\0\\-2\end{bmatrix}-4\begin{bmatrix}6\\1\\5\end{bmatrix}+2\begin{bmatrix}-1\\1\\2\end{bmatrix}$$
 (b) $a\begin{bmatrix}-1\\5\end{bmatrix}-3\begin{bmatrix}-a\\2\end{bmatrix}$

[6] 6. In each of the following cases, either express \vec{p} as a linear combination of $\vec{u}, \vec{v}, \vec{w}$ or explain why there is no such linear combination.

(a)
$$\vec{p} = \begin{bmatrix} -4\\7\\5\\0 \end{bmatrix}, \vec{u} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \vec{w} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

(b) $\vec{p} = \begin{bmatrix} -1\\2\\4 \end{bmatrix}, \vec{u} = \begin{bmatrix} 3\\7\\0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \vec{w} = \begin{bmatrix} 3\\1\\0 \end{bmatrix}$

- [4] 7. Suppose $\vec{u} = \begin{bmatrix} a \\ -5 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 6-b \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Find a and b such that $2\vec{u} 3\vec{v} + 5\vec{w} = \vec{0}$.
- [5] 8. Use vectors to show that the mid-point of the line joining $A(x_1, x_2, x_3)$ to $B(y_1, y_2, y_3)$ is the point $C(\frac{x_1+y_1}{2}, \frac{x_2+y_2}{2}, \frac{x_3+y_3}{2})$.
- [6] 9. Given three points A(-1,0), B(2,3), C(4,-1) in the plane, find all points D such that ABCD are the vertices of a parallelogram. (hint: three possible locations for D).

[5] 10. Let
$$\vec{u} = \begin{bmatrix} -3\\2\\1 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 5\\0\\-3 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 6\\1\\-4 \end{bmatrix}$. Is it possible to find a scalar t such that $\vec{u} + t\vec{v}$ is parallel to \vec{w} .