Math 2050 Assignment 1, Due September 20, 2017
[3] 1. If $B=(1,-4,3)$ and $\overrightarrow{A B}=\left[\begin{array}{l}-1 \\ 2 \\ 5\end{array}\right]$, find A.
Solution: Let $A=(x, y, z) . \overrightarrow{A B}=\left[\begin{array}{l}-1 \\ 2 \\ 5\end{array}\right]=\left[\begin{array}{l}1-x \\ -4-y \\ 3-z\end{array}\right] . \Longrightarrow$

$$
x=2, y=-6, z=-2
$$

[4] 2. Given $\vec{u}=\left[\begin{array}{l}-2 \\ 2\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ -4\end{array}\right]$, find $\vec{u}-\vec{v}$ and illustrate the subtraction with a picture. Solution: $\vec{u}-\vec{v}=\left[\begin{array}{l}-3 \\ 6\end{array}\right]$. The picture of the subtraction can be shown by the triangle rule(omitted).
[6] 3. Let $\vec{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ -1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}2 \\ 0 \\ -2\end{array}\right]$ and $\vec{u}_{4}=\left[\begin{array}{l}5 \\ 10 \\ 3\end{array}\right]$
Are \vec{u}_{1} and \vec{u}_{2} parallel? \vec{u}_{1} and $\vec{u}_{3} ? \vec{u}_{1}$ and \vec{u}_{4} ?
Solution: i. $\overrightarrow{u_{2}}=0 \overrightarrow{u_{1}}$. They are parallel.
ii. $\overrightarrow{u_{3}}=2 \overrightarrow{u_{1}}$. They are parallel.
iii. $\overrightarrow{u_{4}}$ is not scalar multiple of $\overrightarrow{u_{1}}$. They are not parallel.
[5] 4. Let $P_{1}(2,-3,6)$ and $P_{2}(2,2,-4)$. Find the coordinates of the point P on the line segment from P_{1} to P_{2} such that $\overrightarrow{P_{1} P}=\frac{2}{5} \overrightarrow{P P_{2}}$.
Solution: Let the point P have coordinates (x, y, z).
Then, $\overrightarrow{P_{1} P}=\frac{2}{5} \overrightarrow{P P_{2}}$. This implies that
$\left[\begin{array}{l}x-2 \\ y+3 \\ z-6\end{array}\right]=\frac{2}{5}\left[\begin{array}{c}2-x \\ 2-y) \\ -4-z\end{array}\right] \Longleftrightarrow 5\left[\begin{array}{l}x-2 \\ y+3 \\ z-6\end{array}\right]=2\left[\begin{array}{c}2-x \\ 2-y \\ -4-z\end{array}\right]$. Therefore, $5(x-2)=2(2-x)$,
$5(y+3)=2(2-y)$ and $5(z-6)=2(-4-z)$. So, $x=2, y=-\frac{11}{7}$ and $z=\frac{22}{7}$
That is, the point P is $P=\left(2,-\frac{11}{7}, \frac{22}{7}\right)$.
[6] 5. Express each of the following as a single vector.
(a) $3\left[\begin{array}{l}1 \\ 0 \\ -2\end{array}\right]-4\left[\begin{array}{l}6 \\ 1 \\ 5\end{array}\right]+2\left[\begin{array}{l}-1 \\ 1 \\ 2\end{array}\right]$
(b) $a\left[\begin{array}{l}-1 \\ 5\end{array}\right]-3\left[\begin{array}{l}-a \\ 2\end{array}\right]$

Solution: (a) $\left[\begin{array}{l}-23 \\ -2 \\ -22\end{array}\right]$.
(b) $\left[\begin{array}{l}2 a \\ 5 a-6\end{array}\right]$.
[6] 6. In each of the following cases, either express \vec{p} as a linear combination of $\vec{u}, \vec{v}, \vec{w}$ or explain why there is no such linear combination.
(a) $\vec{p}=\left[\begin{array}{l}-4 \\ 7 \\ 5 \\ 0\end{array}\right], \vec{u}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{w}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
(b) $\vec{p}=\left[\begin{array}{l}-1 \\ 2 \\ 4\end{array}\right], \vec{u}=\left[\begin{array}{l}3 \\ 7 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right], \vec{w}=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$

Solution:(a) $\left[\begin{array}{l}-4 \\ 7 \\ 5 \\ 0\end{array}\right]=k_{1} \vec{u}+k_{2} \vec{v}+k_{3} \vec{w} . \quad k_{1}=-4, k_{2}=7, k_{3}=5$.
(b). $\left[\begin{array}{l}-1 \\ 2 \\ 4\end{array}\right]=k_{1}\left[\begin{array}{l}3 \\ 7 \\ 0\end{array}\right]+k_{2}\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]+k_{3}\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$. This gives

$$
\begin{aligned}
3 k_{1}+3 k_{3} & =-1 \\
7 k_{1}+2 k_{2}+k_{3} & =2 \\
0 & =4
\end{aligned}
$$

No such k_{1}, k_{2}, k_{3} exists, implying that \vec{p} is NOT a linear combination of \vec{u}, \vec{v} and \vec{w}.
[4] 7. Suppose $\vec{u}=\left[\begin{array}{c}a \\ -5\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ 6-b\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Find a and b such that $2 \vec{u}-3 \vec{v}+5 \vec{w}=\overrightarrow{0}$.
Solution:

$$
\begin{aligned}
2 \vec{u}-3 \vec{v}+5 \vec{w}=\overrightarrow{0} & \Longleftrightarrow 2\left[\begin{array}{c}
a \\
-5
\end{array}\right]-3\left[\begin{array}{c}
1 \\
6-b
\end{array}\right]+5\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Longleftrightarrow\left[\begin{array}{c}
2 a-3+15 \\
-10-18+3 b+10
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Longleftrightarrow\left[\begin{array}{c}
2 a+12 \\
-18+3 b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Longleftrightarrow a=-6 \text { and } b=6
\end{aligned}
$$

[5] 8. Use vectors to show that the mid-point of the line joining $A\left(x_{1}, x_{2}, x_{3}\right)$ to $B\left(y_{1}, y_{2}, y_{3}\right)$ is the point $C\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}, \frac{x_{3}+y_{3}}{2}\right)$.
Solution: Let the point C as (x, y, z). Use the relation $\overrightarrow{A C}=\overrightarrow{C B}$ to have
$\left[\begin{array}{l}x-x_{1} \\ y-y_{1} \\ z-z_{1}\end{array}\right]=\left[\begin{array}{l}x_{2}-x \\ y_{2}-y \\ z_{2}-z\end{array}\right]$.
This gives $x-x_{1}=x_{2}-x$, i.e., $x=\frac{x_{1}+x_{2}}{2}$. Similarly we have $y=\frac{y_{1}+y_{2}}{2}, z=\frac{z_{1}+z_{2}}{2}$.
[6] 9. Given three points $A(-1,0), B(2,3), C(4,-1)$ in the plane, find all points D such that ABCD are the vertices of a parallelogram. (hint: three possible locations for D).

Case 1: $A \vec{D}_{1}=\overrightarrow{B C}=\left[\begin{array}{l}2 \\ -4\end{array}\right] \cdot D_{1}=(1,-4)$.
Case 2: $\overrightarrow{A B}=C \vec{D}_{2} . \quad D_{2}=(7,2)$.
Case 3: $\overrightarrow{B C}=\overrightarrow{D_{3} A} . D_{3}=(-3,4)$.
[5] 10. Let $\vec{u}=\left[\begin{array}{r}-3 \\ 2 \\ 1\end{array}\right], \vec{v}=\left[\begin{array}{r}5 \\ 0 \\ -3\end{array}\right]$ and $\vec{w}=\left[\begin{array}{r}6 \\ 1 \\ -4\end{array}\right]$. Is it possible to find a scalar t such that $\vec{u}+t \vec{v}$ is parallel to \vec{w}.
Solution: Suppose $\left[\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right]+t\left[\begin{array}{c}5 \\ 0 \\ -3\end{array}\right]=k\left[\begin{array}{c}6 \\ 1 \\ -4\end{array}\right]$. Then, $\left[\begin{array}{c}-3+5 t \\ 2 \\ 1-3 t\end{array}\right]=\left[\begin{array}{c}6 k \\ k \\ -4 k\end{array}\right] . \Longrightarrow$
(i) $-3+5 t=6 k$, (ii) $k=2$ and (iii) $1-3 t=-4 k$.

From (ii) we have, $k=2$ and so from the (iii) we get $t=3$.
We need to check if these values of k and t satisfy the first equation.
Substituting in, we get $-3+5(3)=6(2)$ which is correct. So, it is possible to to find such a value for t .
Geometrically, this means that the vectors $\vec{u}, \vec{v}, \vec{w}$ can all lie in the same plane in 3-D space in this particular case which is not true in general in 3-D space.

