Math 2050 Assignment 1, Due September 20, 2017

[3] 1. If
$$B = (1, -4, 3)$$
 and $\vec{AB} = \begin{bmatrix} -1\\2\\5 \end{bmatrix}$, find A .
Solution: Let $A = (x, y, z)$. $\vec{AB} = \begin{bmatrix} -1\\2\\5 \end{bmatrix} = \begin{bmatrix} 1-x\\-4-y\\3-z \end{bmatrix}$. \Longrightarrow
$$x = 2, y = -6, z = -2$$

[4] 2. Given $\vec{u} = \begin{bmatrix} -2\\2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1\\-4 \end{bmatrix}$, find $\vec{u} - \vec{v}$ and illustrate the subtraction with a picture. Solution: $\vec{u} - \vec{v} = \begin{bmatrix} -3\\6 \end{bmatrix}$. The picture of the subtraction can be shown by the triangle rule(omitted).

[6] 3. Let
$$\vec{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$ and $\vec{u}_4 = \begin{bmatrix} 5 \\ 10 \\ 3 \end{bmatrix}$
Are \vec{u}_1 and \vec{u}_2 parallel? \vec{u}_1 and \vec{u}_3 ? \vec{u}_1 and \vec{u}_4 ?
Solution: i. $\vec{u}_2 = 0\vec{u}_1$. They are parallel.

ii. $\vec{u_3} = 2\vec{u_1}$. They are parallel.

iii. $\vec{u_4}$ is not scalar multiple of $\vec{u_1}$. They are not parallel.

- [5] 4. Let $P_1(2, -3, 6)$ and $P_2(2, 2, -4)$. Find the coordinates of the point P on the line segment from P_1 to P_2 such that $\overrightarrow{P_1P} = \frac{2}{5}\overrightarrow{PP_2}$. Solution: Let the point P have coordinates (x, y, z). Then, $\overrightarrow{P_1P} = \frac{2}{5}\overrightarrow{PP_2}$. This implies that $\begin{bmatrix} x-2\\ y+3\\ z-6 \end{bmatrix} = \frac{2}{5}\begin{bmatrix} 2-x\\ 2-y\\ -4-z \end{bmatrix} \iff 5\begin{bmatrix} x-2\\ y+3\\ z-6 \end{bmatrix} = 2\begin{bmatrix} 2-x\\ 2-y\\ -4-z \end{bmatrix}$. Therefore, 5(x-2) = 2(2-x), 5(y+3) = 2(2-y) and 5(z-6) = 2(-4-z). So, x = 2, $y = -\frac{11}{7}$ and $z = \frac{22}{7}$ That is, the point P is $P = (2, -\frac{11}{7}, \frac{22}{7})$.
- [6] 5. Express each of the following as a single vector.

(a)
$$3\begin{bmatrix}1\\0\\-2\end{bmatrix} - 4\begin{bmatrix}6\\1\\5\end{bmatrix} + 2\begin{bmatrix}-1\\1\\2\end{bmatrix}$$
 (b) $a\begin{bmatrix}-1\\5\end{bmatrix} - 3\begin{bmatrix}-a\\2\end{bmatrix}$
Solution: (a) $\begin{bmatrix}-23\\-2\\-22\end{bmatrix}$. (b) $\begin{bmatrix}2a\\5a-6\end{bmatrix}$.

6. In each of the following cases, either express \vec{p} as a linear combination of $\vec{u}, \vec{v}, \vec{w}$ or explain [6]why there is no such linear combination.

(a)
$$\vec{p} = \begin{bmatrix} -4\\7\\5\\0 \end{bmatrix}, \vec{u} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \vec{w} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

(b) $\vec{p} = \begin{bmatrix} -1\\2\\4 \end{bmatrix}, \vec{u} = \begin{bmatrix} 3\\7\\0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \vec{w} = \begin{bmatrix} 3\\1\\0 \end{bmatrix}$
Solution:(a) $\begin{bmatrix} -4\\7\\5\\0 \end{bmatrix} = k_1\vec{u} + k_2\vec{v} + k_3\vec{w}.$ $k_1 = -4, k_2 = 7, k_3 = 5.$
(b). $\begin{bmatrix} -1\\2\\4 \end{bmatrix} = k_1\begin{bmatrix} 3\\7\\0 \end{bmatrix} + k_2\begin{bmatrix} 0\\2\\0 \end{bmatrix} + k_3\begin{bmatrix} 3\\1\\0 \end{bmatrix}.$ This gives
 $3k_1 + 3k_3 = -1$
 $7k_1 + 2k_2 + k_3 = 2$
 $0 = 4$

No such k_1, k_2, k_3 exists, implying that \vec{p} is NOT a linear combination of \vec{u}, \vec{v} and \vec{w} .

[4] 7. Suppose
$$\vec{u} = \begin{bmatrix} a \\ -5 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1 \\ 6-b \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Find a and b such that $2\vec{u} - 3\vec{v} + 5\vec{w} = \vec{0}$.
Solution:

$$2\vec{u} - 3\vec{v} + 5\vec{w} = \vec{0} \iff 2\begin{bmatrix}a\\-5\end{bmatrix} - 3\begin{bmatrix}1\\6-b\end{bmatrix} + 5\begin{bmatrix}3\\2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$$
$$\iff \begin{bmatrix}2a-3+15\\-10-18+3b+10\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$$
$$\iff \begin{bmatrix}2a+12\\-18+3b\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$$
$$\iff a = -6 \text{ and } b = 6$$

8. Use vectors to show that the mid-point of the line joining $A(x_1, x_2, x_3)$ to $B(y_1, y_2, y_3)$ is the [5]point $C(\frac{x_1+y_1}{2}, \frac{x_2+y_2}{2}, \frac{x_3+y_3}{2}).$

Solution: Let the point C as (x, y, z). Use the relation $\vec{AC} = \vec{CB}$ to have

$$\begin{bmatrix} x - x_1 \\ y - y_1 \\ z - z_1 \end{bmatrix} = \begin{bmatrix} x_2 - x \\ y_2 - y \\ z_2 - z \end{bmatrix}.$$

This gives $x - x_1 = x_2 - x$, i.e., $x = \frac{x_1 + x_2}{2}$. Similarly we have $y = \frac{y_1 + y_2}{2}, z = \frac{z_1 + z_2}{2}$.

9. Given three points A(-1,0), B(2,3), C(4,-1) in the plane, find all points D such that [6]ABCD are the vertices of a parallelogram. (hint: three possible locations for D).

Case 1: $\vec{AD_1} = \vec{BC} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$. $D_1 = (1, -4)$. Case 2: $\vec{AB} = \vec{CD_2}$. $D_2 = (7, 2)$. Case 3: $\vec{BC} = \vec{D_3A}$. $D_3 = (-3, 4)$.

[5] 10. Let $\vec{u} = \begin{bmatrix} -3\\2\\1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 5\\0\\-3 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 6\\1\\-4 \end{bmatrix}$. Is it possible to find a scalar t such that $\vec{u} + t\vec{v}$ is parallel to \vec{w} .

Solution: Suppose
$$\begin{bmatrix} -3\\2\\1 \end{bmatrix} + t \begin{bmatrix} 5\\0\\-3 \end{bmatrix} = k \begin{bmatrix} 6\\1\\-4 \end{bmatrix}$$
. Then, $\begin{bmatrix} -3+5t\\2\\1-3t \end{bmatrix} = \begin{bmatrix} 6k\\k\\-4k \end{bmatrix}$. \Longrightarrow
(i) $-3+5t = 6k$, (ii) $k = 2$ and (iii) $1 - 3t = -4k$.

From (ii) we have, k = 2 and so from the (iii) we get t = 3.

We need to check if these values of k and t satisfy the first equation.

Substituting in, we get -3 + 5(3) = 6(2) which is correct. So, it is possible to to find such a value for t.

Geometrically, this means that the vectors $\vec{u}, \vec{v}, \vec{w}$ can all lie in the same plane in 3-D space in this particular case which is not true in general in 3-D space.