MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH2050 Assignment 4

Due: Wednesday 11 October

[6] 1. Let ℓ_1 , ℓ_2 , ℓ_3 and ℓ_4 be lines given by the following equations.

$$\ell_{1}: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + t_{1} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad \ell_{2}: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \\ 3 \end{bmatrix} + t_{2} \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$$
$$\ell_{3}: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + t_{3} \begin{bmatrix} -2 \\ 4 \\ 1 \end{bmatrix} \qquad \qquad \ell_{4}: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 7 \\ -1 \end{bmatrix} + t_{4} \begin{bmatrix} -6 \\ -4 \\ 6 \end{bmatrix}$$

Determine whether the following pairs of lines are parallel, skew, or if they intersect. In each case explain your answer and find the intersection if it exists.

(a) ℓ_1 and ℓ_2 . (b) ℓ_1 and ℓ_3 . (c) ℓ_2 and ℓ_4 .

Solution.

(a) Lines ℓ_1 and ℓ_2 are not parallel because there is no scalar *c* such that $d_1 = cd_2$. To determine whether they intersect, suppose there are scalars t_1 and t_2 so that

$$\begin{bmatrix} 1\\-1\\0 \end{bmatrix} + t_1 \begin{bmatrix} 2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2\\-3\\3 \end{bmatrix} + t_2 \begin{bmatrix} 3\\2\\-3 \end{bmatrix}$$

Then this gives the following equations

$$\begin{array}{rcl} 1+2t_1 &=& -2+3t_2\\ -1+t_1 &=& -3+2t_2\\ t_1 &=& 3-3t_2 \end{array}$$

Substituting the third of these equations into the second gives $-1 + 3 - t_2 = -3 + 2t_2$ which implies $t_2 = 1$ and $t_1 = 0$. This is also consistent with the first equations, therefore the lines ℓ_1 and ℓ_2 intersect at the point (1, -1, 0). (b) Lines ℓ_1 and ℓ_3 are not parallel because there is no scalar *c* such that $d_1 = cd_3$. To determine whether they intersect, suppose there are scalars t_1 and t_3 so that

$$\begin{bmatrix} 1\\-1\\0 \end{bmatrix} + t_1 \begin{bmatrix} 2\\1\\1 \end{bmatrix} = \begin{bmatrix} 3\\2\\1 \end{bmatrix} + t_3 \begin{bmatrix} -2\\4\\1 \end{bmatrix}$$

Then this gives the following equations

 $\begin{array}{rcrcrcr} 1+2t_1 & = & 3-2t_3\\ -1+t_1 & = & 2+4t_3\\ t_1 & = & 1+t_3 \end{array}$

Substituting the third of these equations into the second gives $-1 + 1 + t_3 = 2 + 4t_3$ which implies $t_3 = -\frac{2}{3}$, so then $t_1 = \frac{1}{3}$. However, from the first equation we have $1 + 2t_1 = \frac{5}{3}$ and $3 - 2t_3 = \frac{11}{3}$ and since $\frac{5}{3} \neq \frac{11}{3}$ the lines ℓ_1 and ℓ_3 do not intersect. Therefore ℓ_1 and ℓ_3 are skew.

(c) Lines ℓ_2 and ℓ_4 are parallel because their direction vectors are parallel. That is, $\begin{bmatrix} -6\\-4\\6 \end{bmatrix} = -2\begin{bmatrix} 3\\2\\-3 \end{bmatrix}$. However note that they are not the same line because the point (-2, -3, 3) is on ℓ_2 but not ℓ_4 .

[6] 2. Let ℓ be the line with equation $\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} -1 \\ 1 \\ 2 \end{vmatrix} + t \begin{vmatrix} -4 \\ 1 \\ 3 \end{vmatrix}$.

- (a) Find the distance from P(2, -1, 5) to ℓ .
- (b) Find the point of ℓ closest to *P*.

Solution.

First note that Q(-1, 1, 2) is a point on ℓ , then $\vec{QP} = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix}$.

The (shortest) distance from *P* to ℓ is given by the length of the vector $\vec{QP} - \vec{p}$, where $\vec{p} = \text{proj}_{\ell}\vec{QP}$. So we first need to find \vec{p} . Note that $\vec{d} = \begin{bmatrix} -4\\1\\3 \end{bmatrix}$ is the direction vector of ℓ .

$$\vec{p} = \frac{\vec{QP} \cdot \vec{d}}{\vec{d} \cdot \vec{d}} \vec{d} = \frac{-5}{26} \begin{bmatrix} -4\\1\\3 \end{bmatrix}$$

Then we have

$$\vec{QP} - \vec{p} = \begin{bmatrix} 3\\-2\\3 \end{bmatrix} + \frac{5}{26} \begin{bmatrix} -4\\1\\3 \end{bmatrix} = \begin{bmatrix} 58/26\\-47/26\\93/26 \end{bmatrix}$$

So the distance from *P* to ℓ is $\sqrt{\left(\frac{58}{26}\right)^2 + \left(\frac{47}{26}\right)^2 + \left(\frac{93}{26}\right)^2} = \sqrt{\frac{547}{26}}$. **(b)** If *A*(*x*, *y*, *z*) is the point of ℓ closest to *P*, then $\vec{AP} = \vec{QP} - \vec{p}$. So,

$$\begin{bmatrix} 2-x\\ -1-y\\ 5-z \end{bmatrix} = \begin{bmatrix} 58/26\\ -47/26\\ 93/26 \end{bmatrix}$$

Thus, $2 - x = \frac{58}{26}$, $1 + y = \frac{47}{26}$ and $5 - z = \frac{93}{26}$. Therefore the point of ℓ closest to *P* is $(\frac{-6}{26}, \frac{73}{26}, \frac{37}{26})$.

[6] 3. (a) Find two orthogonal vectors in the plane π given by the equation 2x - 3y + 4x = 0.

(b) Given the vector $\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, find a vector \vec{p} on the plane π such that $\vec{w} - \vec{p}$ is orthogonal to every vector on π .

Solution.

(a) To find two orthogonal vectors \vec{e} and \vec{f} in π we start with two nonparallel vectors u and v in the plane. The vectors $\vec{u} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$ are one such pair (you may have found a different pair).

Now find the projection $\vec{r} = \text{proj}_{\vec{v}}\vec{u}$.

$$\vec{r} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} = \frac{6}{13} \begin{bmatrix} 3\\2\\0 \end{bmatrix}.$$

Let $\vec{e} = \vec{v}$ and $\vec{f} = \vec{u} - \vec{r} = \begin{bmatrix} 8/13 \\ -12/13 \\ -1 \end{bmatrix}$. Then the vectors \vec{e} and \vec{f} are the required orthogonal vectors in π .

(b) Find the projection $\vec{p} = \text{proj}_{\pi} \vec{w}$.

Use the orthogonal vectors \vec{e} and \vec{f} from part (a). \vec{c}

$$\operatorname{proj}_{\pi} \vec{w} = \frac{w \cdot \vec{e}}{\vec{e} \cdot \vec{e}} \vec{e} + \frac{w \cdot j}{f \cdot \vec{f}} f$$

$$= \frac{5}{13} \begin{bmatrix} 3\\2\\0 \end{bmatrix} + \frac{-17/13}{(8/13)^2 + (12/13)^2 + (13/13)^2} \begin{bmatrix} 8/13\\-12/13\\-12/13\\-1 \end{bmatrix} = \frac{5}{13} \begin{bmatrix} 3\\2\\0 \end{bmatrix} - \frac{17}{29} \begin{bmatrix} 8/13\\-12/13\\-1 \end{bmatrix}$$

$$= \begin{bmatrix} 23/29\\38/29\\17/29 \end{bmatrix}.$$

$$\begin{bmatrix} 4\end{bmatrix} 4. \text{ Let } \vec{u} = \begin{bmatrix} 2\\4\\3 \end{bmatrix} \text{ and } \vec{v} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}. \text{ Find } \operatorname{proj}_{\vec{u}} \vec{v} \text{ and } \operatorname{proj}_{\vec{v}} \vec{u}.$$

Solution.

The projection of \vec{v} on the vector \vec{u} is

$$\operatorname{proj}_{\vec{u}} \vec{v} = \frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} \\ = \frac{4}{29} \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 8/29 \\ 16/29 \\ 12/29 \end{bmatrix} .$$

The projection of \vec{u} on the vector \vec{v} is

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$
$$= \frac{4}{6} \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix} = \begin{bmatrix} 2/3\\ -2/3\\ 4/3 \end{bmatrix}$$

[6] 5. Given P(1,1,3) and a plane π with equation x + 3y - z = 7.

- (a) Find the distance from point *P* to the plane π .
- (b) Find the point on π closest to *P*.

Solution.

(a) The (shortest) distance from point *P* to the plane π is given by the length of the vector $\operatorname{proj}_{\vec{n}} \vec{PQ}$, where \vec{n} is a normal vector to the plane and *Q* is a point on the plane.

The point Q(1,2,0) is on the plane π (you may have found a different point) so let $\vec{PQ} = \begin{bmatrix} 0\\1\\-3 \end{bmatrix}$, and $\vec{n} = \begin{bmatrix} 1\\3\\-1 \end{bmatrix}$ is

normal to π .

$$\text{proj}_{\vec{n}}\vec{PQ} = \frac{\vec{PQ} \cdot \vec{n}}{\vec{n} \cdot \vec{n}}\vec{n} = \frac{6}{11}\vec{n}$$

Then the shortest distance from *P* to π is given by $\|\frac{6}{11}\vec{n}\| = \frac{6}{11}\|\vec{n}\| = 6\sqrt{11}/11$. (**b**) The point on π closest to *P* is the point A(x, y, z) with $\vec{PA} = \text{proj}_{\vec{u}} \vec{PQ}$. So we have

$$\begin{bmatrix} x-1\\ y-1\\ z-3 \end{bmatrix} = \frac{6}{11} \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}$$

Therefore $x - 1 = \frac{6}{11}$, $y - 1 = \frac{18}{11}$ and $z - 3 = -\frac{6}{11}$. So $A\left(\frac{17}{11}, \frac{29}{11}, \frac{27}{11}\right)$ is the point on π closest to *P*.

[4] 6. Describe in geometrical terms the set of all points one unit away from the plane with equation 2x - 2y + z = 3. Find an equation for this set of points.

Solution. Let π be the plane given by the equation 2x - 2y + z = 3. The collection of points with (shortest) distance 1 to the plane π will form two planes parallel to π , one on either "side" of π .

To find the equations for these planes we consider points P(x, y, z) at distance 1 from π . The distance from P to π is given by the length of the vector $\text{proj}_{\vec{n}} \vec{PQ}$, where Q is a point on π and \vec{n} is normal to π .

Let
$$Q(1,0,1)$$
, then $\vec{PQ} = \begin{bmatrix} 1-x\\ -y\\ 1-z \end{bmatrix}$ and note that $\vec{n} = \begin{bmatrix} 2\\ -2\\ 1 \end{bmatrix}$.

$$\operatorname{proj}_{\vec{n}} \vec{PQ} = \frac{\vec{PQ} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n} = \frac{2(1-x) + 2y + (1-z)}{9} \vec{n}$$

So because P(x, y, z) is one unit away from π we have

$$1 = \left\| \frac{2(1-x) + 2y + (1-z)}{9} \vec{n} \right\| = \left| \frac{3 - 2x + 2y - z}{9} \right| \|\vec{n}\| = |3 - 2x + 2y - z| \frac{3}{9}$$

Rearranging this and considering both cases for the absolute value gives the equations

 $3 = \pm (3 - 2x + 2y - z)$

This simplifies to the following equations for the two planes one unit away from π

$$2x - 2y + z = 0$$
 and $2x - 2y + z = 6$.

[2] 7. Suppose vectors \vec{u} and \vec{v} are linearly independent. Show that the vectors $\vec{w} = \vec{u} - \vec{v}$ and $\vec{z} = \vec{u} + 3\vec{v}$ are also linearly independent.

Solution.

Suppose $c\vec{w} + d\vec{z} = \vec{0}$, then this implies

$$\vec{0} = c(\vec{u} - \vec{v}) + d(\vec{u} + 3\vec{v})$$

= $c\vec{u} - c\vec{v} + d\vec{u} + 3d\vec{v}$ by distributivity
= $(c+d)\vec{u} + (3d-c)\vec{v}$ again, by distributivity

It follows that c + d = 0 and 3d - c = 0 because \vec{u} and \vec{v} are linearly independent. Therefore c = -d and c = 3d, so the only solution is that c = d = 0 which shows that \vec{w} and \vec{z} are linearly independent.

[6] 8. Determine whether or not the following sets of vectors are linearly independent or linearly dependent. If the vectors are linearly dependent then give an example of a nontrivial linear combination of the vectors which equals the zero vector.

(a)
$$\vec{u} = \begin{bmatrix} 2\\4\\3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 5\\6\\9 \end{bmatrix}$ (b) $\vec{u} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -1\\3\\2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 7\\-3\\1 \end{bmatrix}$ (c) $\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{0}$

Solution.

(a) Suppose $a\vec{u} + b\vec{v} + c\vec{w} = \vec{0}$ for scalars *a*, *b* and *c*. Then we have the following equations.

$$2a+b+5c = 0$$

$$4a-b+6c = 0$$

$$3a+9c = 0$$

The third of these equations implies a = -3c, which if we substitute into the second equation yields -12c - b + 6c = 0 so b = -6c. Finally, by considering the first equation -6c - 6c + 5c = -7c = 0. Therefore the only solution to the above equations is a = b = c = 0, so \vec{u} , \vec{v} and \vec{w} are linearly independent.

(b) Suppose $a\vec{u} + b\vec{v} + c\vec{w} = \vec{0}$ for scalars *a*, *b* and *c*. Then we have the following equations.

$$2a - b + 7c = 0$$

$$3b - 3c = 0$$

$$a + 2b + c = 0$$

The second of these equations implies c = b which we can substitute into the third equation to obtain a + 3b = 0, that is a = -3b. By substituting this into the first equation we have -6b - b + 7b = 0 which holds for any value b. So an example solution is b = 1, c = 1 and a = -3.

(c) These vectors are linearly dependent. Nontrivial solutions are $0\vec{e_1} + 0\vec{e_2} + 0\vec{e_3} + c\vec{0} = \vec{0}$, where *c* is any nonzero scalar.

[40]