MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH2050 Assignment 4

Due: Wednesday 11 October
[6] 1. Let $\ell_{1}, \ell_{2}, \ell_{3}$ and ℓ_{4} be lines given by the following equations.

$$
\begin{array}{ll}
\ell_{1}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+t_{1}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] & \ell_{2}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-3 \\
3
\end{array}\right]+t_{2}\left[\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right] \\
\ell_{3}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+t_{3}\left[\begin{array}{c}
-2 \\
4 \\
1
\end{array}\right] & \ell_{4}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
7 \\
-1
\end{array}\right]+t_{4}\left[\begin{array}{c}
-6 \\
-4 \\
6
\end{array}\right]
\end{array}
$$

Determine whether the following pairs of lines are parallel, skew, or if they intersect. In each case explain your answer and find the intersection if it exists.
(a) ℓ_{1} and ℓ_{2}.
(b) ℓ_{1} and ℓ_{3}.
(c) ℓ_{2} and ℓ_{4}.

Solution.

(a) Lines ℓ_{1} and ℓ_{2} are not parallel because there is no scalar c such that $d_{1}=c d_{2}$. To determine whether they intersect, suppose there are scalars t_{1} and t_{2} so that

$$
\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+t_{1}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-3 \\
3
\end{array}\right]+t_{2}\left[\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right]
$$

Then this gives the following equations

$$
\begin{aligned}
1+2 t_{1} & =-2+3 t_{2} \\
-1+t_{1} & =-3+2 t_{2} \\
t_{1} & =3-3 t_{2}
\end{aligned}
$$

Substituting the third of these equations into the second gives $-1+3-t_{2}=-3+2 t_{2}$ which implies $t_{2}=1$ and $t_{1}=0$. This is also consistent with the first equations, therefore the lines ℓ_{1} and ℓ_{2} intersect at the point $(1,-1,0)$.
(b) Lines ℓ_{1} and ℓ_{3} are not parallel because there is no scalar c such that $d_{1}=c d_{3}$. To determine whether they intersect, suppose there are scalars t_{1} and t_{3} so that

$$
\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+t_{1}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+t_{3}\left[\begin{array}{c}
-2 \\
4 \\
1
\end{array}\right]
$$

Then this gives the following equations

$$
\begin{aligned}
1+2 t_{1} & =3-2 t_{3} \\
-1+t_{1} & =2+4 t_{3} \\
t_{1} & =1+t_{3}
\end{aligned}
$$

Substituting the third of these equations into the second gives $-1+1+t_{3}=2+4 t_{3}$ which implies $t_{3}=-\frac{2}{3}$, so then $t_{1}=\frac{1}{3}$. However, from the first equation we have $1+2 t_{1}=\frac{5}{3}$ and $3-2 t_{3}=\frac{11}{3}$ and since $\frac{5}{3} \neq \frac{11}{3}$ the lines ℓ_{1} and ℓ_{3} do not intersect. Therefore ℓ_{1} and ℓ_{3} are skew.
(c) Lines ℓ_{2} and ℓ_{4} are parallel because their direction vectors are parallel. That is, $\left[\begin{array}{c}-6 \\ -4 \\ 6\end{array}\right]=-2\left[\begin{array}{c}3 \\ 2 \\ -3\end{array}\right]$. However note that they are not the same line because the point $(-2,-3,3)$ is on ℓ_{2} but not ℓ_{4}.
[6] 2. Let ℓ be the line with equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]+t\left[\begin{array}{c}-4 \\ 1 \\ 3\end{array}\right]$.
(a) Find the distance from $P(2,-1,5)$ to ℓ.
(b) Find the point of ℓ closest to P.

Solution.

First note that $Q(-1,1,2)$ is a point on ℓ, then $\overrightarrow{Q P}=\left[\begin{array}{c}3 \\ -2 \\ 3\end{array}\right]$.
The (shortest) distance from P to ℓ is given by the length of the vector $\overrightarrow{Q P}-\vec{p}$, where $\vec{p}=\operatorname{proj}_{\ell} \overrightarrow{Q P}$. So we first need to find \vec{p}. Note that $\vec{d}=\left[\begin{array}{c}-4 \\ 1 \\ 3\end{array}\right]$ is the direction vector of ℓ.

$$
\vec{p}=\frac{\overrightarrow{Q P} \cdot \vec{d}}{\vec{d} \cdot \vec{d}} \vec{d}=\frac{-5}{26}\left[\begin{array}{c}
-4 \\
1 \\
3
\end{array}\right]
$$

Then we have

$$
\overrightarrow{Q P}-\vec{p}=\left[\begin{array}{c}
3 \\
-2 \\
3
\end{array}\right]+\frac{5}{26}\left[\begin{array}{c}
-4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
58 / 26 \\
-47 / 26 \\
93 / 26
\end{array}\right]
$$

So the distance from P to ℓ is $\sqrt{\left(\frac{58}{26}\right)^{2}+\left(\frac{47}{26}\right)^{2}+\left(\frac{93}{26}\right)^{2}}=\sqrt{\frac{547}{26}}$.
(b) If $A(x, y, z)$ is the point of ℓ closest to P, then $\overrightarrow{A P}=\overrightarrow{Q P}-\vec{p}$. So,

$$
\left[\begin{array}{c}
2-x \\
-1-y \\
5-z
\end{array}\right]=\left[\begin{array}{c}
58 / 26 \\
-47 / 26 \\
93 / 26
\end{array}\right]
$$

Thus, $2-x=\frac{58}{26}, 1+y=\frac{47}{26}$ and $5-z=\frac{93}{26}$. Therefore the point of ℓ closest to P is $\left(\frac{-6}{26}, \frac{73}{26}, \frac{37}{26}\right)$.
[6] 3. (a) Find two orthogonal vectors in the plane π given by the equation $2 x-3 y+4 x=0$.
(b) Given the vector $\vec{w}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, find a vector \vec{p} on the plane π such that $\vec{w}-\vec{p}$ is orthogonal to every vector on π.

Solution.

(a) To find two orthogonal vectors \vec{e} and \vec{f} in π we start with two nonparallel vectors u and v in the plane. The vectors $\vec{u}=\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$ are one such pair (you may have found a different pair).
Now find the projection $\vec{r}=\operatorname{proj}_{\vec{v}} \vec{u}$.

$$
\vec{r}=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}=\frac{6}{13}\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right] .
$$

Let $\vec{e}=\vec{v}$ and $\vec{f}=\vec{u}-\vec{r}=\left[\begin{array}{c}8 / 13 \\ -12 / 13 \\ -1\end{array}\right]$. Then the vectors \vec{e} and \vec{f} are the required orthogonal vectors in π.
(b) Find the projection $\vec{p}=\operatorname{proj}_{\pi} \vec{w}$.

Use the orthogonal vectors \vec{e} and \vec{f} from part (a).

$$
\begin{aligned}
\operatorname{proj}_{\pi} \vec{w} & =\frac{\vec{w} \cdot \vec{e}}{\vec{e} \cdot \vec{e}}+\frac{\vec{w} \cdot f}{\vec{f} \cdot \vec{f}} \vec{f} \\
& =\frac{5}{13}\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]+\frac{-17 / 13}{(8 / 13)^{2}+(12 / 13)^{2}+(13 / 13)^{2}}\left[\begin{array}{c}
8 / 13 \\
-12 / 13 \\
-1
\end{array}\right]=\frac{5}{13}\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]-\frac{17}{29}\left[\begin{array}{c}
8 / 13 \\
-12 / 13 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
23 / 29 \\
38 / 29 \\
17 / 29
\end{array}\right] .
\end{aligned}
$$

[4] 4. Let $\vec{u}=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$. Find $\operatorname{proj}_{\vec{u}} \vec{v}$ and $\operatorname{proj}_{\vec{v}} \vec{u}$.

Solution.

The projection of \vec{v} on the vector \vec{u} is

$$
\begin{aligned}
\operatorname{proj}_{\vec{u}} \vec{v} & =\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \\
& =\frac{4}{29}\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
8 / 29 \\
16 / 29 \\
12 / 29
\end{array}\right] .
\end{aligned}
$$

The projection of \vec{u} on the vector \vec{v} is

$$
\begin{aligned}
\operatorname{proj}_{\vec{v}} \vec{u} & =\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \\
& =\frac{4}{6}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
-2 / 3 \\
4 / 3
\end{array}\right] .
\end{aligned}
$$

[6] 5. Given $P(1,1,3)$ and a plane π with equation $x+3 y-z=7$.
(a) Find the distance from point P to the plane π.
(b) Find the point on π closest to P.

Solution.

(a) The (shortest) distance from point P to the plane π is given by the length of the vector $\operatorname{proj}_{\vec{n}} \overrightarrow{P Q}$, where \vec{n} is a normal vector to the plane and Q is a point on the plane.
The point $Q(1,2,0)$ is on the plane π (you may have found a different point) so let $\overrightarrow{P Q}=\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]$, and $\vec{n}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ is normal to π.

$$
\operatorname{proj}_{\vec{n}} \overrightarrow{P Q}=\frac{\overrightarrow{P Q} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n}=\frac{6}{11} \vec{n}
$$

Then the shortest distance from P to π is given by $\left\|\frac{6}{11} \vec{n}\right\|=\frac{6}{11}\|\vec{n}\|=6 \sqrt{11} / 11$.
(b) The point on π closest to P is the point $A(x, y, z)$ with $\overrightarrow{P A}=\operatorname{proj}_{\vec{n}} \overrightarrow{P Q}$. So we have

$$
\left[\begin{array}{l}
x-1 \\
y-1 \\
z-3
\end{array}\right]=\frac{6}{11}\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]
$$

Therefore $x-1=\frac{6}{11}, y-1=\frac{18}{11}$ and $z-3=-\frac{6}{11}$. So $A\left(\frac{17}{11}, \frac{29}{11}, \frac{27}{11}\right)$ is the point on π closest to P.
[4] 6. Describe in geometrical terms the set of all points one unit away from the plane with equation $2 x-2 y+z=3$. Find an equation for this set of points.
Solution. Let π be the plane given by the equation $2 x-2 y+z=3$. The collection of points with (shortest) distance 1 to the plane π will form two planes parallel to π, one on either "side" of π.
To find the equations for these planes we consider points $P(x, y, z)$ at distance 1 from π. The distance from P to π is given by the length of the vector $\operatorname{proj}_{\vec{n}} \overrightarrow{P Q}$, where Q is a point on π and \vec{n} is normal to π.
Let $Q(1,0,1)$, then $\overrightarrow{P Q}=\left[\begin{array}{c}1-x \\ -y \\ 1-z\end{array}\right]$ and note that $\vec{n}=\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$.

$$
\operatorname{proj}_{\vec{n}} \overrightarrow{P Q}=\frac{\overrightarrow{P Q} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n}=\frac{2(1-x)+2 y+(1-z)}{9} \vec{n}
$$

So because $P(x, y, z)$ is one unit away from π we have

$$
1=\left\|\frac{2(1-x)+2 y+(1-z)}{9} \vec{n}\right\|=\left|\frac{3-2 x+2 y-z}{9}\right|\|\vec{n}\|=|3-2 x+2 y-z| \frac{3}{9}
$$

Rearranging this and considering both cases for the absolute value gives the equations

$$
3= \pm(3-2 x+2 y-z)
$$

This simplifies to the following equations for the two planes one unit away from π

$$
2 x-2 y+z=0 \quad \text { and } \quad 2 x-2 y+z=6
$$

[2] 7. Suppose vectors \vec{u} and \vec{v} are linearly independent. Show that the vectors $\vec{w}=\vec{u}-\vec{v}$ and $\vec{z}=\vec{u}+3 \vec{v}$ are also linearly independent.

Solution.

Suppose $c \vec{w}+d \vec{z}=\overrightarrow{0}$, then this implies

$$
\begin{aligned}
\overrightarrow{0} & =c(\vec{u}-\vec{v})+d(\vec{u}+3 \vec{v}) & & \\
& =c \vec{u}-c \vec{v}+d \vec{u}+3 d \vec{v} & & \text { by distributivity } \\
& =(c+d) \vec{u}+(3 d-c) \vec{v} & & \text { again, by distributivity }
\end{aligned}
$$

It follows that $c+d=0$ and $3 d-c=0$ because \vec{u} and \vec{v} are linearly independent. Therefore $c=-d$ and $c=3 d$, so the only solution is that $c=d=0$ which shows that \vec{w} and \vec{z} are linearly independent.
[6] 8. Determine whether or not the following sets of vectors are linearly independent or linearly dependent. If the vectors are linearly dependent then give an example of a nontrivial linear combination of the vectors which equals the zero vector.
(a) $\vec{u}=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \quad \vec{w}=\left[\begin{array}{l}5 \\ 6 \\ 9\end{array}\right]$
(b) $\vec{u}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right], \quad \vec{w}=\left[\begin{array}{c}7 \\ -3 \\ 1\end{array}\right]$
(c) $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}, \overrightarrow{0}$

Solution.

(a) Suppose $a \vec{u}+b \vec{v}+c \vec{w}=\overrightarrow{0}$ for scalars a, b and c. Then we have the following equations.

$$
\begin{array}{r}
2 a+b+5 c=0 \\
4 a-b+6 c=0 \\
3 a+9 c=0
\end{array}
$$

The third of these equations implies $a=-3 c$, which if we substitute into the second equation yields $-12 c-b+6 c=$ 0 so $b=-6 c$. Finally, by considering the first equation $-6 c-6 c+5 c=-7 c=0$. Therefore the only solution to the above equations is $a=b=c=0$, so \vec{u}, \vec{v} and \vec{w} are linearly independent.
(b) Suppose $a \vec{u}+b \vec{v}+c \vec{w}=\overrightarrow{0}$ for scalars a, b and c. Then we have the following equations.

$$
\begin{aligned}
2 a-b+7 c & =0 \\
3 b-3 c & =0 \\
a+2 b+c & =0
\end{aligned}
$$

The second of these equations implies $c=b$ which we can substitute into the third equation to obtain $a+3 b=0$, that is $a=-3 b$. By substituting this into the first equation we have $-6 b-b+7 b=0$ which holds for any value b. So an example solution is $b=1, c=1$ and $a=-3$.
(c) These vectors are linearly dependent. Nontrivial solutions are $0 \overrightarrow{e_{1}}+0 \overrightarrow{e_{2}}+0 \overrightarrow{e_{3}}+c \overrightarrow{0}=\overrightarrow{0}$, where c is any nonzero scalar.

