MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Final Exam	Mathematics 3202	WINTER 2005

Marks

[12] 1. A particle starts at point (3, 2, 1) and moves with velocity

$$\vec{v} = \begin{bmatrix} 0\\\sqrt{3}\\3t^2 \end{bmatrix}$$

[3] (a) Find the position vector $\vec{r}(t)$

[2] (b) Find the acceleration vector $\vec{a}(t)$

- [2] (c) Find speed at t = 1
- [3] (d) Find the curvature at t = 1

[1] (e) Find the radius of the osculating circle at t = 1.

[1] (f) Find the distance traveled from t = 1 to t = 7 (set up only, do not evaluate)

[10] 2. Let $f(x, y) = \sqrt{x^2 + 2y^2}$

- [2] (a) Find the gradient of f(x, y).
- [3] (b) Find equation of a plane tangent to the surface z = f(x, y) at point (-1, 2, 3)

[3] (c) Use Lagrange multiplier method to find the minimum of f(x, y) subject to constraint x + y = 3, and the point where this minimum occurs.

[2] (d) Sketch the constraint x + y = 3 and the level curve of f(x, y) which passes via the point found in (c).

[5] 3. Find volume bounded by the sphere $x^2 + y^2 + z^2 = 4$ from above, and by the cone $z = \sqrt{x^2 + y^2}$ from below in the **first octant**.

- [9] 4. Evaluate the line integral $\oint_C xy^2 dx + x^3 dy$, where C is a trapezoid with vertices (0,0), (3,0), (3,4), (0,1)
 - (a) directly
 - (b) using Green's theorem $\int_C \vec{F} \, d\vec{r} = \int \int_S \left(\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} \right) dA$

[5] 5. Use the Divergence theorem $\int \int_S \vec{F} d\vec{S} = \int \int \int_E \operatorname{div} \vec{F} dV$ to evaluate the flux accross the surface of the tetrahedron bounded by planes x = 0, y = 0, z = 0 and 4x + 2y + z = 2 of vector field $\vec{F} = (x, 2y, 3z)$.

[9] 6. Verify Stokes Theorem $\int_C \vec{F} d\vec{r} = \int \int_S \operatorname{curl} \vec{F} d\vec{S}$ for vector field $\vec{F} = (y, z, x)$ and surface S which is a part of paraboloid $z = x^2 + y^2 - 16$ that lies below the *xy*-plane.