MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Marks
[12] 1. A particle starts at point $(3,2,1)$ and moves with velocity $\vec{v}=\left[\begin{array}{r}0 \\ \sqrt{3} \\ 3 t^{2}\end{array}\right]$
[3] (a) Find the position vector $\vec{r}(t)$
[2] (b) Find the acceleration vector $\vec{a}(t)$
[2] (c) Find speed at $t=1$
[3] (d) Find the curvature at $t=1$
[1] (e) Find the radius of the osculating circle at $t=1$.
[1] (f) Find the distance traveled from $t=1$ to $t=7$ (set up only, do not evaluate)
[10] 2. Let $f(x, y)=\sqrt{x^{2}+2 y^{2}}$
[2] (a) Find the gradient of $f(x, y)$.
[3] (b) Find equation of a plane tangent to the surface $z=f(x, y)$ at point $(-1,2,3)$
[3] (c) Use Lagrange multiplier method to find the minimum of $f(x, y)$ subject to constraint $x+y=3$, and the point where this minimum occurs.
[2] (d) Sketch the constraint $x+y=3$ and the level curve of $f(x, y)$ which passes via the point found in (c).
[5] 3. Find volume bounded by the sphere $x^{2}+y^{2}+z^{2}=4$ from above, and by the cone $z=\sqrt{x^{2}+y^{2}}$ from below in the first octant.
[9] 4. Evaluate the line integral $\oint_{C} x y^{2} d x+x^{3} d y$, where C is a trapezoid with vertices $(0,0),(3,0)$, $(3,4),(0,1)$
(a) directly
(b) using Green's theorem $\int_{C} \vec{F} d \vec{r}=\iint_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A$
[5] 5. Use the Divergence theorem $\iint_{S} \vec{F} d \vec{S}=\iiint_{E} \operatorname{div} \vec{F} d V$ to evaluate the flux accross the surface of the tetrahedron bounded by planes $x=0, y=0, z=0$ and $4 x+2 y+z=2$ of vector field $\vec{F}=(x, 2 y, 3 z)$.
[9] 6. Verify Stokes Theorem $\int_{C} \vec{F} d \vec{r}=\iint_{S} \operatorname{curl} \vec{F} d \vec{S}$ for vector field $\vec{F}=(y, z, x)$ and surface S which is a part of paraboloid $z=x^{2}+y^{2}-16$ that lies below the $x y$-plane.

