MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Instructor Margo Kondratieva

Student

Student number

Marks
[10] 1. Let D be a region in the first quadrant bounded by the curves $x=0, x=y$ and $x^{2}+y^{2}=9$.
[1] (a) Sketch the region.
This is the 8th part of a circle of radius 3 , center at the origin, between the positive part of y-axis and the diagonal of the first quadrant.
(b) Describe the region in terms of inequalities in Cartesian variables in two ways.

The intersection of the circle and the line $x=y$ is $(3 / \sqrt{2}, 3 / \sqrt{2})$. Thus the two possible descriptions are

$$
0 \leq x \leq 3 / \sqrt{2}, \quad x \leq y \leq \sqrt{9-x^{2}}
$$

or

$$
0 \leq y \leq 3 / \sqrt{2}, 0 \leq x \leq y \quad \text { and } \quad 3 / \sqrt{2} \leq y \leq 3,0 \leq x \leq \sqrt{9-y^{2}}
$$

[2] (c) Set up integrals for the area of D corresponding to each of the set of inequalities found in (b). Do not evaluate them.

$$
\int_{0}^{3 / \sqrt{2}} \int_{x}^{\sqrt{9-x^{2}}} d y d x=\int_{0}^{3 / \sqrt{2}} \int_{0}^{y} d x d y+\int_{3 / \sqrt{2}}^{3} \int_{0}^{\sqrt{9-y^{2}}} d x d y
$$

[1] (d) Describe the region in terms of inequalities in the Polar coordinates.

$$
0 \leq r \leq 3, \quad \frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}
$$

[3]
(e) Evaluate $\iint_{D}\left(1+x^{2}+y^{2}\right)^{-1} d A$ in Polar coordinates.

$$
\int_{\pi / 4}^{\pi / 2} \int_{0}^{3} \frac{r}{1+r^{2}} d r d \theta=\frac{\pi}{8} \ln 10
$$

[10] 2. Consider triple integral describing volume of a solid.

$$
V=\int_{0}^{R} \int_{0}^{\sqrt{R^{2}-x^{2}}} \int_{-\sqrt{2 R^{2}-x^{2}-y^{2}}}^{\sqrt{x^{2}+y^{2}}} d z d y d x
$$

1. Which of the following surfaces form the boundary of the solid?

- cylinder
- plane
- hyperbolic parabolic (saddle)
- elliptic paraboloid
- sphere
- cone

Answer: cylinder (side), two planes(side), cone(top), sphere(botom)
This is a quarter of an ice-cream cone turned upside down.
2. For each integral (a),.., (g) given below identify whether it has the same value as V above or not. (Do not evaluate the integrals).
(a) Yes

$$
\int_{0}^{R} \int_{0}^{\sqrt{R^{2}-y^{2}}} \int_{-\sqrt{2 R^{2}-x^{2}-y^{2}}}^{\sqrt{x^{2}+y^{2}}} d z d x d y
$$

(b) Yes

$$
\int_{0}^{R} \int_{0}^{\sqrt{R^{2}-x^{2}}} \int_{-\sqrt{x^{2}+y^{2}}}^{\sqrt{2 R^{2}-x^{2}-y^{2}}} d z d y d x
$$

(c) No

$$
\int_{0}^{\pi / 2} \int_{0}^{R} \int_{r}^{\sqrt{2 R^{2}-r^{2}}} r d z d r d \theta
$$

(d) Yes

$$
\int_{\pi / 2}^{\pi} \int_{0}^{R} \int_{-\sqrt{2 R^{2}-r^{2}}}^{r} r d z d r d \theta
$$

(e) No

$$
\int_{0}^{\pi / 2} \int_{\pi / 4}^{\pi} \int_{0}^{\sqrt{2} R} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(f) Yes

$$
\int_{0}^{\pi / 2} \int_{\pi / 4}^{3 \pi / 4} \int_{0}^{\frac{R}{\sin \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta+\int_{0}^{\pi / 2} \int_{3 \pi / 4}^{\pi} \int_{0}^{\sqrt{2} R} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(g) No

$$
\int_{0}^{\pi / 2} \int_{\pi / 4}^{3 \pi / 4} \int_{0}^{R \sin \phi} \rho^{2} \sin \phi d \rho d \phi d \theta+\int_{0}^{\pi / 2} \int_{3 \pi / 4}^{\pi} \int_{0}^{\sqrt{2} R} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

[5] 3. Use Lagrange multipliers method to find maximum value of function $f=x^{2} y$ along the curve $x^{2}+y^{2}=1$. Please, circle correct answer.

$$
\sqrt{\frac{2}{27}} \quad \frac{\mathbf{2}}{\sqrt{\mathbf{2 7}}} \quad \frac{2 \sqrt{2}}{3 \sqrt{3}} \quad \frac{2}{3} \sqrt{3}
$$

Solve the system

$$
2 x y=\lambda 2 x, \quad x^{2}=\lambda 2 y, \quad x^{2}+y^{2}=1
$$

obtain $y=\lambda$ then $x^{2}=2 y^{2}$ so $3 y^{2}=1$. Thus $y= \pm 1 / \sqrt{3}, x^{2}=2 / 3$.
Thus $f=x^{2} y=2 /(3 \sqrt{3})=2 / \sqrt{27}$ is the maximum.
Note than there is another solution of the system $x=0, \lambda=0, y= \pm 1$, which gives $f=0$, so this is not the maximum value.
[5] 4. Evaluate the following integral $\int_{C} x d x+y^{2} d y+z^{3} d z$ along the parametric curve $\vec{r}=\left(t, \sqrt{t}, t^{1 / 3}\right)$ from point $(1,1,1)$ to point $(64,8,4)$
Rewrite

$$
x=t, \quad y=\sqrt{t}, \quad z=t^{1 / 3}, \quad 1 \leq t \leq 64
$$

Thus

$$
d x=d t, \quad d y=\frac{1}{2} t^{-1 / 2} d t, \quad d z=\frac{1}{3} z^{-2 / 3} d t
$$

Consequently,

$$
\int_{C} x d x+y^{2} d y+z^{3} d z=\int_{1}^{64}\left(t+\frac{1}{2} t^{1 / 2}+\frac{1}{3} t^{1 / 3}\right) d t=\frac{27379}{12}
$$

[1] 5. [BONUS] Which of the following is NOT a name of neither a moon of a planet nor an asteroid in Solar system?

Phobos, Deimos, Gaspra, Io, Callisto, Mathilde, Europa, Leda, Atlas, Ida, Janus, Helene, Titan, Sputnik, Ophelia, Bianca, Desdemona, Juliet, Eros, Larissa, Triton, Miranda, Luna.

