MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

FINAL EXAM
Mathematics 3202
FALL 2003

n

Marks
[25] 1. The velocity of a charged particle moving in a magnetic field and subject to the Lorentz force is the vector function

$$
\mathbf{v}(t)=\langle\sin t, \cos t, 3\rangle
$$

The initial position of the particle is $\mathbf{r}(0)=\langle 0,0,-3\rangle$.
(a) Find the acceleration of the particle as a vector-function of t.
(b) Find the position as a vector-function of t. Can you identify the shape of the trajectory?
(c) Find the distance traveled from $t=0$ until $t=10$.
(d) Find an equation of the normal plane to the trajectory at the initial position.
(e) Find an equation of the osculating plane to the trajectory at the initial position.
2. For the given function

$$
F(x, y)=\frac{y^{2}}{2 x+y^{2}}
$$

(a) Give a parametric description of a curve along which $\lim _{(x, y) \rightarrow(0,0)} F(x, y)=-1$. in
(b) Is the function $F(x, y)$ continuous at the point $(0,0)$? Explain your answer.
3.
(a) Find point(s) on the surface $z=y^{2}-x^{2}-1$ where the normal line is parallel to the vector $\langle-1,1,1\rangle$.
(b) Find the equation of the tangent plane to the surface at the point where $x=1, y=2$.
[6] 4. Find the rate of change of the function $F(x, y)=\sinh (x y)$ at the point $(\ln 2,1)$ in the direction $\theta=\pi / 3$.
5. Consider the vector field $\vec{F}(x, y)=(2 x-y, 2 y-x)$.
(a) Show that it is concervative.
(b) Find the potential function $f(x, y)$.
(c) Evaluate (by any means) the line integral of $\vec{F}(x, y)$ along the segment of parabola $y=x^{2}, x \in[-1,2]$.
[8] 6. Evaluate by reversing the order of integration

$$
\int_{0}^{1} \int_{x}^{1} e^{-y^{2}} d y d x
$$

[9] 7. Evaluate the line integral $\oint_{C} y d x-x d y$, where the curve C is the circle $x^{2}-2 x+y^{2}=3$ in two ways:
[5] (a) directly
[4] (b) using Green's theorem
[6] 8. Find the volume of the solid tower with square base $0 \leq x \leq 1,0 \leq y \leq 1$ at the level $z=0$ and the roof described by the equation $z=\sqrt{x y}$.
[12] 9. Solve ONE of the following problems. (If you solve more than one, you will receive the mark for the best out of 3 solutions, plus bonus 50% of the mark for the second best solution plus 25% of the mark for the third one.)
(a) Use the Lagrange Multipliers Method to find maximum of the function $F(x, y)=x^{2} y$ with $x \geq 0, y \geq 0$, subject to the constraint $x+y=1$.
[12] (b) Verify Stokes' theorem for the vector field $\vec{F}=\langle 3 y, 2 z, x\rangle$ and the surface S which is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$.
(c) Use the Divergence theorem to evaluate the flux across the surface of the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0),(0,0,2)$ of the vector field $\vec{F}=\left\langle x y, y^{2}, x^{2}\right\rangle$.

