MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

		FINAL EXA	М	Mathematics 3202	Fall 2003
		n			
Marks					
[25]	1.	The velocity of a charged particle moving in a magnetic field and subject to the Lorentz force is the vector function $\mathbf{v}(t) = \langle \sin t, \cos t, 3 \rangle.$			
		The initial pos	sition of the par	ticle is $\mathbf{r}(0) = \langle 0, 0, -3 \rangle$.	
 [2] [5] [4] [5] [9] 		 (a) Find the a (b) Find the p (c) Find the d (d) Find an eq (e) Find an eq 	cceleration of the osition as a vect istance traveled quation of the ne quation of the os	he particle as a vector-function of corfunction of t . Can you identify from $t = 0$ until $t = 10$. formal plane to the trajectory at the sculating plane to the trajectory a	t.the shape of the trajectory?he initial position.at the initial position.
[10]	2.	For the given function $F(x,y) = \frac{y^2}{2x+y^2}$			
[5]		(a) Give a par	ametric descrip	tion of a curve along which $\lim_{(x,y)\to 0}$	F(x,y) = -1. in
[5]		(b) Is the func	tion $F(x, y)$ cor	ntinuous at the point $(0,0)$? Expla	ain your answer.
[10]	3.				
[5]		(a) Find point vector $\langle -$	$f(s)$ on the surface $1, 1, 1\rangle$.	ace $z = y^2 - x^2 - 1$ where the ne	ormal line is parallel to the
[5]		(b) Find the e	quation of the t	angent plane to the surface at the	e point where $x = 1$, $y = 2$.
[6]	4.	Find the rate of change of the function $F(x, y) = \sinh(xy)$ at the point $(\ln 2, 1)$ in the direction $\theta = \pi/3$.			
[14]	5.	5. Consider the vector field $\vec{F}(x,y) = (2x - y, 2y - x)$.			
[4]		(a) Show that	it is concervativ	ve.	
[5]		(b) Find the p	otential functio	n $f(x,y)$.	
[5]		(c) Evaluate ($y = x^2, x \in x^2$)	by any means) $\in [-1, 2].$	the line integral of $\vec{F}(x,y)$ alon	ng the segment of parabola

[8] 6. Evaluate by reversing the order of integration

$$\int_0^1 \int_x^1 e^{-y^2} \, dy \, dx.$$

- [9] 7. Evaluate the line integral $\oint_C y dx x dy$, where the curve C is the circle $x^2 2x + y^2 = 3$ in two ways:
- [5] (a) directly
- [4] (b) using Green's theorem
- [6] 8. Find the volume of the solid tower with square base $0 \le x \le 1$, $0 \le y \le 1$ at the level z = 0 and the roof described by the equation $z = \sqrt{xy}$.
- [12] 9. Solve ONE of the following problems. (If you solve more than one, you will receive the mark for the best out of 3 solutions, plus bonus 50% of the mark for the second best solution plus 25% of the mark for the third one.)
- [12] (a) Use the Lagrange Multipliers Method to find maximum of the function $F(x, y) = x^2 y$ with $x \ge 0, y \ge 0$, subject to the constraint x + y = 1.
- [12] (b) Verify Stokes' theorem for the vector field $\vec{F} = \langle 3y, 2z, x \rangle$ and the surface S which is the part of the paraboloid $z = 9 x^2 y^2$ that lies above the plane z = 5.
- [12] (c) Use the Divergence theorem to evaluate the flux across the surface of the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,2) of the vector field $\vec{F} = \langle xy, y^2, x^2 \rangle$.