1. Is the following vector field irrotational or incompressible at point $(0,1,2)$?

$$
\vec{F}=\left(\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right)
$$

Solution:

1. From Assignment 7 we know that curl $\vec{F}=\overrightarrow{0}=(0,0,0)$. Thus the field is irrotational at point $(0,1,2)$. In fact it is irrotational at any point but the origin where it is not defined.
2. Compute $\operatorname{div} \vec{F}=\left(x^{2}+y^{2}+z^{2}\right)^{-1}$ it gives $1 / 5$ at point $(0,1,2)$. Since it is not zero, the field is not incompressible at this point.
3. Evaluate the surface integral for given function
(a) $\iint_{\mathbf{S}} y d S$, where \mathbf{S} is a surface $z=2 / 3\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x \leq 1,0 \leq y \leq 1$.

Solution: The normal vector to the surface is $\vec{n}=\left(x^{1 / 2}, y^{1 / 2},-1\right)$. Thus

$$
\iint_{\mathbf{S}} y d S=\int_{0}^{1} \int_{0}^{1} y(x+y+1)^{1 / 2} d x d y=\frac{4}{105}(9 \sqrt{3}+4 \sqrt{2}-2)
$$

Here to evaluate the y -integral it is convenient to sub $u=y+2$ or $u=y+1$.
(b) $\iint_{\mathbf{S}} \sqrt{1+x^{2}+y^{2}} d S$, where \mathbf{S} is the helicoid with vector equation $\vec{r}(u, v)=(u \cos v, u \sin v, v)$, $0 \leq u \leq 1,0 \leq v \leq \pi$.
Solution: The normal vector to the surface is $\vec{n}=\vec{r}_{u} \times \vec{r}_{v}=(\sin v,-\cos v, u)$. Its length is $\left(1+u^{2}\right)^{1 / 2}$. Thus

$$
\iint_{\mathbf{S}} \sqrt{1+x^{2}+y^{2}} d S=\int_{0}^{\pi} \int_{0}^{1}\left(1+u^{2}\right)^{1 / 2}\left(1+u^{2}\right)^{1 / 2} d u d v=4 \pi / 3
$$

3. Evaluate the surface integral for given vector field
(a) $\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=\left(x y, 4 x^{2}, y z\right)$ and \mathbf{S} is a surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 1$, with upward orientation.
Solution: The normal upward vector to the surface is $\vec{n}=\left(-e^{y},-x e^{y}, 1\right)$. Thus

$$
\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}=\int_{0}^{1} \int_{0}^{1}-x y\left(e^{y}\right)-4 x^{2}\left(x e^{y}\right)+y\left(x e^{y}\right) d x d y=1-e
$$

(b) $\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=\left(y, x, z^{2}\right)$ and \mathbf{S} is the helocoid with vector equation $\vec{r}(u, v)=(u \cos v, u \sin v, v), 0 \leq u \leq 1,0 \leq v \leq \pi$, with upward orientation.
Solution: The normal upward vector to the surface is $\vec{n}=(\sin v,-\cos v, u)$, and $\vec{F}(\vec{r}(u, v))=\left(u \sin v, u \cos v, v^{2}\right)$. Thus

$$
\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}=\int_{0}^{\pi} \int_{0}^{1}\left(u \sin ^{2} v-u \cos ^{2} v+u v^{2}\right) d u d v=\pi^{3} / 6
$$

4. Use Stokes's Theorem to evaluate surface integral $\iint_{\mathbf{S}} \operatorname{curl} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=(y z, x z, x y)$, and surface \mathbf{S} is a part of paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$, oriented upward.
Solution: The plane $z=5$ intersects the paraboloid in the circle $z=5, x^{2}+y^{2}=4$. Perametric equation of the circle is $x=2 \cos t, y=2 \sin t, z=5,0 \leq t \leq 2 \pi$. The vector field on the curve is $\vec{F}=(10 \sin t, 10 \cos t, 4 \cos t \sin t)$.
By Stokes' Theorem

$$
\iint_{\mathbf{S}} \operatorname{curl} \vec{F} \cdot d \vec{S}=\int_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi}\left(-20 \sin ^{2} t+20 \cos ^{2} t\right) d t=0
$$

5. Use Stokes's Theorem to evaluate line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=\left(e^{-x}, e^{x}, e^{z}\right)$, and C is the boundary of the plane $2 x+y+2 z=2$ in the first octant, oriented counterclockwise as viewed from above.
Solution: Here curl $\vec{F}=\left(0,0, e^{x}\right)$. The surface is the portion of the plane $z=(2-2 x-y) / 2$ over triangular region in xy-plane $0 \leq x \leq 1,0 \leq y \leq 2-2 x$.
By Stokes' Theorem

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{\mathbf{S}} \operatorname{curl} \vec{F} \cdot d \vec{S}=\int_{0}^{1} \int_{0}^{2-2 x} e^{x} d y d x=2 e-4
$$

6. Verify that Divergence theorem is true for the vector field $\vec{F}=\left(x^{2}, x y, z\right)$ and the solid bounded by paraboloid $z=4-x^{2}-y^{2}$ and $x y$-plane.

Solution:

1. $\operatorname{div} \vec{F}=3 x+1=3 r \cos \theta+1$. Thus

$$
\iiint_{E} \operatorname{div} \vec{F} d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}}(3 r \cos \theta+1) r d z d r d \theta=8 \pi
$$

2a Surfase integral through the top (paraboloid) is 8π.
Here normal outward vector is $\vec{n}=(2 x, 2 y, 1)$ and vector field on the surface is $\vec{F}=\left(x^{2}, x y, 4-x^{2}-y^{2}\right)$. The domain of integration is the circle $x^{2}+y^{2} \leq 4$ in the xy-plane.
2b Surface integral through the bottom (circle in xy-plane) is zero.
Here normal outward vector is $\vec{n}=(0,0,-1)$ and vector field on the surface is $\vec{F}=\left(x^{2}, x y, 0\right)$. The domain of integration is the circle $x^{2}+y^{2} \leq 4$ in the xy-plane.

Thus total flux is the same as the triple integral.
7. Verify that Divergence theorem is true for the vector field $\vec{F}=(x, y, z)$ and the unit ball $x^{2}+y^{2}+z^{2}=1$.

Solution:

1. $\operatorname{div} \vec{F}=3$. Thus the triple integral is $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} 3 d \rho d \phi d \theta=4 \pi$.
2. The surface integral is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi}\left(\sin ^{3} v \cos ^{2} u+\sin ^{3} v \sin ^{2} u+\sin v \cos ^{2} v\right) d v d u=4 \pi
$$

Here we used parametric equation for the sphere

$$
x=\sin v \cos u, \quad y=\sin v \sin u, \quad z=\cos v, \quad 0 \leq v \leq \pi, \quad 0 \leq u \leq 2 \pi
$$

with outward normal vector

$$
\vec{n}=\left(\sin ^{2} v \cos u, \sin ^{2} v \sin u, \sin v \cos v\right) .
$$

