1. Is the following vector field irrotational or incompressible at point (0, 1, 2)?

$$\vec{F} = \left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$$

- 2. Evaluate the surface integral for given function
 - (a) $\int \int_{\mathbf{S}} y \, dS$, where **S** is a surface $z = 2/3(x^{3/2} + y^{3/2}), 0 \le x \le 1, 0 \le y \le 1$.
 - (b) $\int \int_{\mathbf{S}} \sqrt{1 + x^2 + y^2} \, dS$, where **S** is the helocoid with vector equation $\vec{r}(u, v) = (u \cos v, u \sin v, v)$, $0 \le u \le 1, 0 \le v \le \pi$.
- 3. Evaluate the surface integral for given vector field
 - (a) $\int \int_{\mathbf{S}} \vec{F} \cdot d\vec{S}$, where $\vec{F}(x, y, z) = (xy, 4x^2, yz)$ and **S** is a surface $z = xe^y$, $0 \le x \le 1$, $0 \le y \le 1$, with upward orientation.
 - (b) $\int \int_{\mathbf{S}} \vec{F} \cdot d\vec{S}$, where $\vec{F}(x, y, z) = (y, x, z^2)$ and **S** is the helocoid with vector equation $\vec{r}(u, v) = (u \cos v, u \sin v, v), 0 \le u \le 1, 0 \le v \le \pi$, with upward orientation.
- 4. Use Stokes's Theorem to evaluate surface integral $\int \int_{\mathbf{S}} \operatorname{curl} \vec{F} \cdot d\vec{S}$, where $\vec{F}(x, y, z) = (yz, xz, xy)$, and surface **S** is a part of paraboloid $z = 9 x^2 y^2$ that lies above the plane z = 5, oriented upward.
- 5. Use Stokes's Theorem to evaluate line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (e^{-x}, e^x, e^z)$, and C is the boundary of the plane 2x + y + 2z = 2 in the first octant, oriented counterclockwise as viewed from above.
- 6. Verify that Divergence theorem is true for the vector field $\vec{F} = (x^2, xy, z)$ and the solid bounded by paraboloid $z = 4 x^2 y^2$ and xy-plane.
- 7. Verify that Divergence theorem is true for the vector field $\vec{F} = (x, y, z)$ and the unit ball $x^2 + y^2 + z^2 = 1$.