1. Is the following vector field irrotational or incompressible at point $(0,1,2)$?

$$
\vec{F}=\left(\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right)
$$

2. Evaluate the surface integral for given function
(a) $\iint_{\mathbf{S}} y d S$, where \mathbf{S} is a surface $z=2 / 3\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x \leq 1,0 \leq y \leq 1$.
(b) $\iint_{\mathbf{S}} \sqrt{1+x^{2}+y^{2}} d S$, where \mathbf{S} is the helocoid with vector equation $\vec{r}(u, v)=(u \cos v, u \sin v, v)$, $0 \leq u \leq 1,0 \leq v \leq \pi$.
3. Evaluate the surface integral for given vector field
(a) $\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=\left(x y, 4 x^{2}, y z\right)$ and \mathbf{S} is a surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 1$, with upward orientation.
(b) $\iint_{\mathbf{S}} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=\left(y, x, z^{2}\right)$ and \mathbf{S} is the helocoid with vector equation $\vec{r}(u, v)=(u \cos v, u \sin v, v), 0 \leq u \leq 1,0 \leq v \leq \pi$, with upward orientation.
4. Use Stokes's Theorem to evaluate surface integral $\iint_{\mathbf{S}} \operatorname{curl} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=(y z, x z, x y)$, and surface \mathbf{S} is a part of paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$, oriented upward.
5. Use Stokes's Theorem to evaluate line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=\left(e^{-x}, e^{x}, e^{z}\right)$, and C is the boundary of the plane $2 x+y+2 z=2$ in the first octant, oriented counterclockwise as viewed from above.
6. Verify that Divergence theorem is true for the vector field $\vec{F}=\left(x^{2}, x y, z\right)$ and the solid bounded by paraboloid $z=4-x^{2}-y^{2}$ and $x y$-plane.
7. Verify that Divergence theorem is true for the vector field $\vec{F}=(x, y, z)$ and the unit ball $x^{2}+y^{2}+z^{2}=1$.
