1. Evaluate the line integral along given curve by two methods: (a) directly (b) using Green's Therem
(a) $\oint_{C} x y^{2} d x+x^{3} d y$, where C is a rectangle with vertices $(0,0)(2,0)(2,3)(0,3)$.

Solution

(a) Line integral along each side of the rectangle gives $0+24-18+0=6$.
(b) by Green's Theorem, $\int_{0}^{2} \int_{0}^{3}\left(3 x^{2}-2 x y\right) d y d x=6$.
(b) $\oint_{C} x d x+y d y$, where C consists of the line segments from $(0,1)$ to $(0,0)$ from $(0,0)$ to $(1,0)$ and the parabola $y=1-x^{2}$ from $(1,0)$ to $(0,1)$.

Solution

(a) Line integral along each side of the region gives $\int_{0}^{1}(0 d t+(1-t)(-d t))+\int_{0}^{1}(t d t+0 d t)+$ $\int_{0}^{1}\left((1-t) d t+\left(2 t-t^{2}\right)(2-2 t)\right) d t=0$.
(b) by Green's Theorem, $\iint_{D} 0 d A=0$.
(c) $\oint_{C} e^{y} d x+2 x e^{y} d y$, where C is square with sides $x=0 x=1 y=0 y=1$.

Solution:
(a) line integrals give $1+(2 e-2)-e+0=e-1$
(b) by Green theorem $\int_{0}^{1} \int_{0}^{1}\left(2 e^{y}-e^{y}\right) d x d y=e-1$
(d) $\oint_{C} x^{2} y^{2} d x+4 x y^{3} d y$, where C is a triangle with vertices $(0,0)(1,3)(0,3)$.

Solution:
(a) line integrals give $333 / 5-3+0=318 / 5$
(b) by Green theorem $\int_{0}^{3} \int_{0}^{y / 3}\left(4 y^{3}-2 x^{2} y\right) d x d y=318 / 5$
2. Evaluate the line integral using Green's Theorem.
(a) $\oint_{C} \sin y d x+x \cos y d y$, where C is the ellipse $x^{2}+x y+y^{2}=1$.

Solution:

$$
\oint_{C} \sin y d x+x \cos y d y=\iint_{D}(\cos y-\cos y) d A=0
$$

(b) $\oint_{C} e^{x}+x^{2} y d x+e^{y}-x y^{2} d y$, where C is the circle $x^{2}+y^{2}=25$, oriented cklockwise.

Solution:

$$
\oint_{C} e^{x}+x^{2} y d x+e^{y}-x y^{2} d y=-\iint_{D}\left(-y^{2}-x^{2}\right) d A=\iint_{D}\left(y^{2}+x^{2}\right) d A=\int_{0}^{5} \int_{0}^{2 \pi} r^{2} r d \theta d r=\frac{625}{2} \pi
$$

3. Find the work done by the force $\vec{F}=\left(x(x+y), x y^{2}\right)$ in moving a particle from the origin along the line segment to $(1,0)$ then along the line segment to $(0,1)$ and then back to the origin along the y-axis.
Solution: The work is represented by line integral $\int_{C} \vec{F} d \vec{r}=\int_{C} x(x+y) d x+x y^{2} d y=$, where the path C is the triangle with vertices at $(0,0),(1,0)$ and $(0,1)$. By Green's theorem this line integral is equal to

$$
\int_{0}^{1} \int_{0}^{1-x}\left(y^{2}-x\right) d y d x=-\frac{1}{12}
$$

4. Find the curl of vector field

$$
\vec{F}=\left(\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right)
$$

Solution:

$$
\operatorname{curl} \overrightarrow{\mathrm{F}}=\left[\frac{-2 \mathrm{yz}+2 \mathrm{yz}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2}}, \frac{-2 \mathrm{xz}+2 \mathrm{xz}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2}}, \frac{-2 \mathrm{yx}+2 \mathrm{yx}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2}}\right]=[0,0,0]=\overrightarrow{0} .
$$

