1. Evaluate the line integral along given curve by two methods: (a) directly (b) using Green's Therem
(a) $\oint_{C} x y^{2} d x+x^{3} d y$, where C is a rectangle with vertices $(0,0)(2,0)(2,3)(0,3)$.
(b) $\oint_{C} x d x+y d y$, where C consists of the line segments from $(0,1)$ to $(0,0)$ from $(0,0)$ to $(1,0)$ and the parabola $y=1-x^{2}$ from $(1,0)$ to $(0,1)$.
(c) $\oint_{C} e^{y} d x+2 x e^{y} d y$, where C is square with sides $x=0 x=1 y=0 y=1$.
(d) $\oint_{C} x^{2} y^{2} d x+4 x y^{3} d y$, where C is a triangle with vertices $(0,0)(1,3)(0,3)$.
2. Evaluate the line integral using Green's Theorem.
(a) $\oint_{C} \sin y d x+x \cos y d y$, where C is the ellipse $x^{2}+x y+y^{2}=1$.
(b) $\oint_{C} e^{x}+x^{2} y d x+e^{y}-x y^{2} d y$, where C is the circle $x^{2}+y^{2}=25$, oriented cklockwise.
3. Find the work done by the force $\vec{F}=\left(x(x+y), x y^{2}\right)$ in moving a particle from the origin along the line segment to $(1,0)$ then along the line segment to $(0,1)$ and then back to the origin along the y-axis.
4. Find the curl of vector field

$$
\vec{F}=\left(\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right)
$$

