1. Evaluate the line integral along given curve
(a) $\int y e^{x} d s$, along the line segment jointing $(1,2)$ to $(4,7)$.

Solution Line segment has equations $x=1+3 t, y=2+5 t, 0 \leq t \leq 1$.
Then $\int y e^{x} d s=\int_{0}^{1}(2+5 t) e^{1+3 t} \sqrt{34} d t=\sqrt{34}\left(16 e^{4}-e\right) / 9$.
(b) $\int(x y+\ln x) d y$, along the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$.

Solution Line segment has equations $x=t, y=t^{2}, 1 \leq t \leq 3$.
Then $\int(x y+\ln x) d y=\int_{1}^{3}\left(t^{3}+\ln t\right) 2 t d t=464 / 5+9 \ln 3$.
(c) $\int x^{2} z d s$, along the line segment jointing $(0,6,-1)$ to $(4,1,5)$.

Solution Line segment has equations $x=4 t, y=6-5 t, z=-1+6 t 0 \leq t \leq 1$. Then $\int x^{2} z d s=\int_{0}^{1} 16 t^{2}(-1+6 t) \sqrt{77} d t=\sqrt{77}(56 / 3)$.
(d) $\int(2 x+9 z) d s$, along the arc $x=t, y=t^{2}, z=t^{3}, 0 \leq t \leq 1$.

Answer: $\left(14^{3 / 2}-1\right) / 6$.
(e) $\int z d x+x d y+y d z$, along the $\operatorname{arc} x=t^{2}, y=t^{3}, z=t^{3}, 0 \leq t \leq 1$.

Answer: 3/2
2. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=(y z, x z, x y)$ and $\vec{r}=\left(t, t^{2}, t^{3}\right), t \in[0,1]$. Answer: 1.
3. Determine whether or not \vec{F} is a concervative vector field. If it is, find its potential function $f(x, y)$.
(a) $\vec{F}=\left(x^{3}+4 x y, 4 x y-y^{3}\right)$

Answer: It is not conservative.
(b) $\vec{F}=\left(e^{y}, x e^{y}\right)$

Answer: It is conservative. The potential function is $x e^{y}+C$.
4. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=(y, x+2 y)$ along a smooth curve that starts at $(0,1)$ and ends at $(2,1)$. Hint: use the Fundamental Theorem of Calculus.
Solution: The vector field is concervative. The potential is $g(x, y)=x y+y^{2}+C$.
Thus $\int_{C} \vec{F} \cdot d \vec{r}=g(2,1)-g(0,1)=2$.

