Answers

- 1. Evaluate the line integral along given curve
 - (a) $\int ye^x ds$, along the line segment jointing (1, 2) to (4, 7). Solution Line segment has equations x = 1 + 3t, y = 2 + 5t, $0 \le t \le 1$. Then $\int ye^x ds = \int_0^1 (2 + 5t)e^{1+3t} \sqrt{34} dt = \sqrt{34}(16e^4 - e)/9$.
 - (b) $\int (xy + \ln x) dy$, along the arc of the parabola $y = x^2$ from (1, 1) to (3, 9). Solution Line segment has equations x = t, $y = t^2$, $1 \le t \le 3$. Then $\int (xy + \ln x) dy = \int_1^3 (t^3 + \ln t) 2t dt = 464/5 + 9 \ln 3$.
 - (c) $\int x^2 z \, ds$, along the line segment jointing (0, 6, -1) to (4, 1, 5). Solution Line segment has equations x = 4t, y = 6 - 5t, z = -1 + 6t $0 \le t \le 1$. Then $\int x^2 z \, ds = \int_0^1 16t^2(-1+6t)\sqrt{77} \, dt = \sqrt{77} (56/3)$.
 - (d) $\int (2x+9z) ds$, along the arc x = t, $y = t^2$, $z = t^3$, $0 \le t \le 1$. Answer: $(14^{3/2} - 1)/6$.
 - (e) $\int z \, dx + x \, dy + y \, dz$, along the arc $x = t^2$, $y = t^3$, $z = t^3$, $0 \le t \le 1$. Answer: 3/2
- 2. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (yz, xz, xy)$ and $\vec{r} = (t, t^2, t^3), t \in [0, 1]$. Answer: 1.
- 3. Determine whether or not \vec{F} is a concervative vector field. If it is, find its potential function f(x, y).
 - (a) $\vec{F} = (x^3 + 4xy, 4xy y^3)$ Answer: It is not conservative.
 - (b) $\vec{F} = (e^y, xe^y)$

Answer: It is conservative. The potential function is $xe^y + C$.

4. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (y, x + 2y)$ along a smooth curve that starts at (0, 1) and ends at (2, 1). Hint: use the Fundamental Theorem of Calculus. Solution: The vector field is concervative. The potential is $g(x, y) = xy + y^2 + C$.

Thus $\int_C \vec{F} \cdot d\vec{r} = g(2,1) - g(0,1) = 2.$