1. Evaluate the line integral along given curve
(a) $\int y e^{x} d s$, along the line segment jointing $(1,2)$ to $(4,7)$.
(b) $\int(x y+\ln x) d y$, along the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$.
(c) $\int x^{2} z d s$, along the line segment jointing $(0,6,-1)$ to $(4,1,5)$.
(d) $\int(2 x+9 z) d s$, along the arc $x=t, y=t^{2}, z=t^{3}, 0 \leq t \leq 1$.
(e) $\int z d x+x d y+y d z$, along the $\operatorname{arc} x=t^{2}, y=t^{3}, z=t^{3}, 0 \leq t \leq 1$.
2. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=(y z, x z, x y)$ and $\vec{r}=\left(t, t^{2}, t^{3}\right)$.
3. Determine whether or not \vec{F} is a concervative vector field. If it is, find its potential function $f(x, y)$.
(a) $\vec{F}=\left(x^{3}+4 x y, 4 x y-y^{3}\right)$
(b) $\vec{F}=\left(e^{y}, x e^{y}\right)$
4. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=(y, x+2 y)$ along a smooth curve that starts at $(0,1)$ and ends at $(2,1)$. Hint: use the Fundamental Theorem of Calculus.
