- 1. Evaluate the line integral along given curve
 - (a) $\int ye^x ds$, along the line segment jointing (1,2) to (4,7).
 - (b) $\int (xy + \ln x) dy$, along the arc of the parabola $y = x^2$ from (1, 1) to (3, 9).
 - (c) $\int x^2 z \, ds$, along the line segment jointing (0, 6, -1) to (4, 1, 5).
 - (d) $\int (2x+9z) ds$, along the arc $x = t, y = t^2, z = t^3, 0 \le t \le 1$.
 - (e) $\int z \, dx + x \, dy + y \, dz$, along the arc $x = t^2$, $y = t^3$, $z = t^3$, $0 \le t \le 1$.
- 2. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (yz, xz, xy)$ and $\vec{r} = (t, t^2, t^3)$.
- 3. Determine whether or not \vec{F} is a concervative vector field. If it is, find its potential function f(x, y).
 - (a) $\vec{F} = (x^3 + 4xy, 4xy y^3)$ (b) $\vec{F} = (e^y, xe^y)$
- 4. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (y, x + 2y)$ along a smooth curve that starts at (0, 1) and ends at (2, 1). Hint: use the Fundamental Theorem of Calculus.