1. Find volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$. Solution: In cylindrical coordinates the volume is bounded by cylinder $r=1$ and sphere $r^{2}+z^{2}=4$. Thus the integral is $\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} r d z d r d \theta=(4 / 3) \pi(8-3 \sqrt{3})$.
2. Find the mass of a ball of radius a if the density at any point is proportional to its distance from a fixed axis of symmetry of the ball.
Solution: Let the axis of the symmetry be z. Then the (shortest) distance from any point (x, y, z) to the axis is $\sqrt{x^{2}+y^{2}}$. Thus the density is $k \sqrt{x^{2}+y^{2}}=k r=k \rho \sin \phi$, where k is a constant. Then the mass of the ball in spherical coordinates is $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} k \rho \sin \phi \rho^{2} \sin \phi d \rho d \phi d \theta=a^{4} \pi^{2} k / 4$
3. Evaluate $\iiint_{H}\left(x^{2}+y^{2}\right) d V$, where H is the semispherical region below $x^{2}+y^{2}+z^{2}=1$ and above $x y$-plane.
Solution: In spherical coordinates it becomes $\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{2} \sin ^{2} \phi \rho^{2} \sin \phi d \rho d \phi d \theta=4 \pi / 15$
4. Evaluate $\iiint_{H} e^{\sqrt{x^{2}+y^{2}+z^{2}}} d V$, where H is enclosed by sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant.

Solution: In spherical coordinates it becomes $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} e^{\rho} \rho^{2} \sin \phi d \rho d \phi d \theta=(\pi / 2)\left(5 e^{3}-2\right)$.
5. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane and below the cone $z=\sqrt{x^{2}+y^{2}}$.
Solution: In sperical coordinates this solid is $0 \leq \theta \leq 2 \pi, \pi / 4 \leq \phi \leq \pi / 2,0 \leq \rho \leq 2$ Thus the volume is
$\int_{\pi / 4}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta=8 \sqrt{2} \pi / 3$.
6. Find the volume of the smaller wedge cut from a sphere of radius a by two planes that intersect along a diameter at an angle of $\pi / 6$.
Solution: In sperical coordinates this solid is $0 \leq \theta \leq \pi / 6,0 \leq \phi \leq \pi, 0 \leq \rho \leq a$ Thus the volume is
$\int_{0}^{\pi} \int_{0}^{\pi / 6} \int_{0}^{a} \rho^{2} \sin \phi d \rho d \phi d \theta=\pi a^{3} / 9$.
P.S. Note that this orange piece is $(1 / 12)$ portion of the sphere thus the answer is $\left((4 / 3) \pi a^{3}\right) / 12=$ $\pi a^{3} / 9$.
7. Evaluate using spherical coordinates.

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
$$

Solution: First we identify the solid as being a quater of an ice-cream cone bounded by cone $z=r$ and sphere $z=\sqrt{18-r^{2}}$. The line of intersection of the cone and the sphere is found from $r=\sqrt{18-r^{2}}$, thus $z=r=3$. In the $x y$-plane we have a quarter of a circle $0 \leq \theta \leq \pi / 2,0 \leq r \leq 3$. Also, $r \leq z \leq \sqrt{18-r^{2}}$.
This solid in spherical coordinates is $0 \leq \rho \leq \sqrt{18}, 0 \leq \phi \leq \pi / 4,0 \leq \theta \leq \pi / 2$. The integrant is ρ^{2} thus the integral becomes

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y=\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{18}} \rho^{4} \sin \phi d \rho d \phi d \theta=486 \pi \frac{\sqrt{2}-1}{5}
$$

8. Use transformation $x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$ to evaluate $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$, where the region R is bounded by $x^{2}-x y+y^{2}=2$.
Solution: The Jacobian of the change of variables is $4 / \sqrt{3} . x^{2}-x y+y^{2}=2 u^{2}+2 v^{2}$. Thus in new variables the domain of integration is the circle $u^{2}+v^{2} \leq 1$. Another change of variables $u=r \cos \theta$, $u=r \sin \theta$ leads to

$$
\iint_{R}\left(x^{2}-x y+y^{2}\right) d A=\frac{4}{\sqrt{3}} \int_{0}^{1} \int_{0}^{2 \pi} 2 r^{2} r d \theta d r=4 \pi / \sqrt{3}
$$

