1. Find volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
2. Find the mass of a ball of radius a if the density at any point is proportional to its distance from a fixed axis of symmetry of the ball.
3. Evaluate $\iiint_{H}\left(x^{2}+y^{2}\right) d V$, where H is the semispherical region below $x^{2}+y^{2}+z^{2}=1$ and above $x y$-plane.
4. Evaluate $\iiint_{H} e^{\sqrt{x^{2}+y^{2}+z^{2}}} d V$, where H is enclosed by sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant.
5. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane and below the cone $z=\sqrt{x^{2}+y^{2}}$.
6. Find the volume of the smaller wedge cut from a sphere of radius a by two planes that intersect along a diameter at an angle of $\pi / 6$.
7. Evaluate using spherical coordinates.

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
$$

8. Use transformation $x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$ to evaluate $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$, where the region R is bounded by $x^{2}-x y+y^{2}=2$.
