1. Given position vector $\vec{r}(t)=\left(e^{t}, e^{t} \sin t, e^{t} \cos t\right)$, find tangential and normal components of the acceleration vector. at $(1,0,1)$.
2. The position function of the spaceship is

$$
\vec{r}(t)=\left(1+t, 8+t^{2}, 28+t^{3}\right)
$$

and the coordinates of the space station are $(0,0,0)$. At what moment of time t should the captain turn off the engines in order to coast into the station?
3. Answer questions $1-5$ for each of the following functions (a) -(f).

1. Sketch level curves $f(x, y)=k, k=0,1,2$ (if such a curve exists).
2. Name and sketch the surface given by $z=f(x, y)$.
3. Find partial derivatives f_{x} and f_{y}.
4. Write equation of the tangent plane at point $\left(x_{0}, y_{0}, z_{0}\right)$, where x_{0}, y_{0}, z_{0} are given below.
5. Find gradient vector at point $\left(x_{0}, y_{0}\right)$ and sketch it at the same pictire as the level curves.
(a) $f(x, y)=x^{2}-\frac{y^{2}}{4}, x_{0}=1, y_{0}=2, z_{0}=0$;
(b) $f(x, y)=x^{2}+\frac{y^{2}}{4}, x_{0}=1, y_{0}=2, z_{0}=2$;
(c) $f(x, y)=\sqrt{2+x^{2}+\frac{y^{2}}{4}}, x_{0}=1, y_{0}=2, z_{0}=2$;
(d) $f(x, y)=\sqrt{x^{2}+\frac{y^{2}}{4}}, x_{0}=1, y_{0}=0, z_{0}=1$;
(e) $f(x, y)=\sqrt{3-x^{2}-\frac{y^{2}}{4}}, x_{0}=1, y_{0}=2, z_{0}=1$;
(f) $f(x, y)=\sqrt{x^{2}+\frac{y^{2}}{4}-1}, x_{0}=2, y_{0}=2, z_{0}=2$;
