- 1. Given position vector $\vec{r}(t) = (e^t, e^t \sin t, e^t \cos t)$, find tangential and normal components of the acceleration vector. at (1, 0, 1).
- 2. The position function of the spaceship is

$$\vec{r}(t) = (1+t, 8+t^2, 28+t^3)$$

and the coordinates of the space station are (0, 0, 0). At what moment of time t should the captain turn off the engines in order to coast into the station?

- 3. Answer questions 1-5 for each of the following functions (a) –(f).
 - 1. Sketch level curves f(x, y) = k, k = 0, 1, 2 (if such a curve exists).
 - 2. Name and sketch the surface given by z = f(x, y).
 - 3. Find partial derivatives f_x and f_y .
 - 4. Write equation of the tangent plane at point (x_0, y_0, z_0) , where x_0, y_0, z_0 are given below.
 - 5. Find gradient vector at point (x_0, y_0) and sketch it at the same pictire as the level curves.
 - (a) $f(x,y) = x^2 \frac{y^2}{4}, x_0 = 1, y_0 = 2, z_0 = 0;$

(b)
$$f(x,y) = x^2 + \frac{y^2}{4}, x_0 = 1, y_0 = 2, z_0 = 2$$

(c)
$$f(x,y) = \sqrt{2 + x^2 + \frac{y^2}{4}}, x_0 = 1, y_0 = 2, z_0 = 2;$$

(d) $f(x,y) = \sqrt{x^2 + \frac{y^2}{4}}, x_0 = 1, y_0 = 0, z_0 = 1;$

(e)
$$f(x,y) = \sqrt{3 - x^2 - \frac{y^2}{4}}, x_0 = 1, y_0 = 2, z_0 = 1;$$

(f)
$$f(x,y) = \sqrt{x^2 + \frac{y^2}{4} - 1}, x_0 = 2, y_0 = 2, z_0 = 2;$$