1. Let trajectory be given by vector function $\vec{r}(t)=(t \cos (2 t), t \sin (2 t), 0)$. Find velocity vector $\vec{v}(t)=$ \vec{r}^{\prime}, angular momentum vector $\vec{L}(t)=\vec{r} \times \vec{v}$, acceleration vector $\vec{a}(t)=\vec{r}^{\prime \prime}$ and torque vector $\vec{\tau}(t)=\vec{r} \times \vec{a}$. Is there a moment of time where vectors \vec{r} and \vec{v} are perpendicular?
Answers $\vec{v}=(\cos (2 t)-2 t \sin (2 t), \sin (2 t)+2 t \cos (2 t), 0)$,
$\vec{L}=\left(0,0,2 t^{2}\right)$,
$\vec{a}=(-4 t \cos (2 t)-4 \sin (2 t),-4 t \sin (2 t)+4 \cos (2 t), 0)$,
$\vec{\tau}=(0,0,4 t)$;
Vectors \vec{r} and \vec{v} are perpendicular at time $t=0$.
2. Let trajectory be given by vector function $\vec{r}(t)=(\cos (2 t), \sin (2 t), t)$. Find velocity vector $\vec{v}(t)=\vec{r}^{\prime}$, angular momentum vector $\vec{L}(t)=\vec{r} \times \vec{v}$, acceleration vector $\vec{a}(t)=\vec{r}^{\prime \prime}$ and torque vector $\vec{\tau}(t)=\vec{r} \times \vec{a}$.
Answers $\vec{v}=(-2 \sin (2 t), 2 \cos (2 t), 1)$,
$\vec{L}=(\sin (2 t)-2 t \cos (2 t),-\cos (2 t)-2 t \sin (2 t), 2)$,
$\vec{a}=(-4 \cos (2 t),-4 \sin (2 t), 0)$,
$\vec{\tau}=(4 t \sin (2 t),-4 t \cos (2 t), 0) ;$
3. (a) Is the curve $\vec{r}(t)=\left(t^{3}, t^{2}, t\right)$ smooth?

Answer Vector $\vec{v}=\left(3 t^{2}, 2 t, 1\right) \neq(0,0,0)$ for all t, and each its component is a continuous function of t. Thus the curve is smooth.
(b) Is it true of false that the curve given by $\vec{r}(t)=(f(t), g(t), t)$ is smooth regardless of what the functions $f(t)$ and $g(t)$ are, as long as they are differentiable?
Answer
Continuity of f^{\prime} and g^{\prime} is required for the smoothness of the curve.
4. Use definition of the cross product and the product rule for differentiation to show that

$$
(\vec{x} \times \vec{y})^{\prime}=\vec{x}^{\prime} \times \vec{y}+\vec{x} \times \vec{y}^{\prime} .
$$

Solution Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$. Work out the formula for each component: take the derivative of the vector product $\vec{x} \times \vec{y}$ and rearrange into the sum of two vector products. For the first component we have

$$
\left(x_{2} y_{3}-x_{3} y_{2}\right)^{\prime}=x_{2}^{\prime} y_{3}+x_{2} y_{3}^{\prime}-\left(x_{3}^{\prime} y_{2}+x_{3} y_{2}^{\prime}\right)=\left(x_{2}^{\prime} y_{3}-x_{3}^{\prime} y_{2}\right)+\left(x_{2} y_{3}^{\prime}-x_{3} y_{2}^{\prime}\right)
$$

Similarly, for the second and the third.

$$
\begin{aligned}
& \left(x_{3} y_{1}-x_{1} y_{3}\right)^{\prime}=x_{3}^{\prime} y_{1}+x_{3} y_{1}^{\prime}-\left(x_{1}^{\prime} y_{3}+x_{1} y_{3}^{\prime}\right)=\left(x_{3}^{\prime} y_{1}-x_{1}^{\prime} y_{3}\right)+\left(x_{3} y_{1}^{\prime}-x_{1} y_{3}^{\prime}\right) . \\
& \left(x_{1} y_{2}-x_{2} y_{1}\right)^{\prime}=x_{1}^{\prime} y_{2}+x_{1} y_{2}^{\prime}-\left(x_{2}^{\prime} y_{1}+x_{2} y_{1}^{\prime}\right)=\left(x_{1}^{\prime} y_{2}-x_{2}^{\prime} y_{1}\right)+\left(x_{1} y_{2}^{\prime}-x_{2} y_{1}^{\prime}\right) .
\end{aligned}
$$

5. Find the length of the curve
(a) $\vec{r}=\left(3 t^{2}, 12 t, 8 t^{3 / 2}\right)$ where $0 \leq t \leq 2$.

Answer The length is 36 .
(b) $\vec{r}=(3 t, 4 \sin t, 4 \cos t)$ where $-1 \leq t \leq 10$

Answer The length is 55 .
6. Find the curvature and normal and binormal vectors at given point
(a) $\vec{r}(t)=\left(t, t^{3}, 0\right)$ at $(1,1,0)$

Answer First, point $(1,1,0)$ corresponds to $t=1$. Curvature at $t=1$ is $6 / 10^{3 / 2}$.
Unit tangent vector at $t=1$ is $\vec{T}=10^{-1 / 2}(1,3,0)$.
Normal vector at $t=1$ is $\vec{N}=10^{-1 / 2}(-3,1,0)$.
Binormal vector at $t=1$ is $\vec{B}=(0,0,1)$.
(b) $\vec{r}(t)=\left(e^{t}, e^{t} \sin t, e^{t} \cos t\right)$ at $(1,0,1)$

Answer First, point $(1,0,1)$ corresponds to $t=0$. Curvature at $t=0$ is $\sqrt{2} / 3$.
Unit tangent vector at $t=0$ is $\vec{T}=3^{-1 / 2}(1,1,1)$.
Normal vector at $t=0$ is $\vec{N}=2^{-1 / 2}(0,1,-1)$.
Binormal vector at $t=0$ is $\vec{B}=(-2,1,1)$.
7. Find and graph the osculating circle of the hyperbola $y=2 / x$ at point $(1,2)$.

Answer The radius of the osculating circle is $R=5 \sqrt{5} / 4$, and its center is at point $(7 / 2,13 / 4)$.

